3. Giải bài toán sau và viết vào vở
Tỉ số của hai số a và b bằng \(1\frac{1}{2}\). Tìm hai số đó, biết rằng a - b = 8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số là : a, b , ta có : \(\frac{a}{b}=\frac{3}{2}\)
Theo tính chất của đẳng thức tỷ lệ ta có :
\(\frac{a-b}{b}=\frac{3-2}{2}=\frac{1}{2}\)
Theo giả thiết a - b = 8 nên \(\frac{8}{b}=\frac{1}{2}\Rightarrow b=16\)
Thế vào a - b = 8 , ta được : a - ( + 16 ) = 8 \(\Rightarrow\)a - 16 = 8
\(\Rightarrow\)a = 24
Ta có:a/b=3/2
suy ra: a=3b/2
Ta có: 3b/2-b=8 hay b/2=8
Vậy b=16
a=3.16/2=24
a) Ta có: \(a+b=54\Rightarrow a=54-b\)
Thay vào \(a+c=45\) \(\Rightarrow54-b+c=45\)
Lại có: \(b+c=63\Rightarrow c=63-b\)
Thay vào \(54-b+c=45\Rightarrow54-b+63-b=45\)
Tìm được b:
\(\Rightarrow117-2\times b=45\)
\(\Rightarrow2\times b=117-45\)
\(\Rightarrow2\times b=72\)
\(\Rightarrow b=72:2=36\)
Sau khi tìm được b ta thay \(b=36\) vào \(a+b=54\)
Ta tìm được a:
\(a+36=54\)
\(\Rightarrow a=54-36\)
\(\Rightarrow a=18\)
Sau khi tìm được a ta thay \(a=18\) vào \(a+c=45\)
Ta tìm được c:
\(\Rightarrow18+c=45\)
\(\Rightarrow c=45-18\)
\(\Rightarrow c=27\)
Vậy 3 số a,b,c là \(18,36,27\)
a) Ta có hệ thống phương trình:
a + b = 54
b + c = 63
a + c = 45
The first method of the first method has been:
2a + b + c = 117
Trừ phương thức thứ ba ra khỏi phương thức trên ta được:
2a + b + c - (a + c) = 117 - 45
a + b = 72
Thay a + b = 72 vào phương trình đầu tiên ta được:
72 = 54
một = 18
Thay a = 18 vào phương trình a + b = 54 ta được:
18 + b = 54
b = 36
Thay a = 18 và b = 36 vào phương trình b + c = 63 ta được:
36 + c = 63
c = 27
Do đó a = 18, b = 36, c = 27.
b) Call number to find is xy, ta has:
10x + y + 20 + xy = 292
Rút gọn phương trình, ta được:
10x + y + xy = 272
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 8 và y = 4 thỏa mãn phương trình:
10(8) + 4 + 8(4) = 80 + 4 + 32 = 116
Vậy số đó là 84.
c) Call number to find is xy, ta has:
10x + y + 5 = xy + 428
Rút gọn phương trình, ta được:
10x + y - xy = 423
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 7 và y = 9 thỏa mãn phương trình:
10(7) + 9 - 7(9) = 70 + 9 - 63 = 16
Vậy số đó là 79.
d) Call hai số cần tìm là x và y, ta có:
(x + y)/2 = 45
y = 2x
Thay phương trình thứ hai vào phương trình thứ nhất, ta được:
(x + 2x)/2 = 45
3x/2 = 45
3x = 90
x = 30
Thay x = 30 vào phương trình thứ hai, ta được:
y = 2(30)
y = 60
Vậy hai số là 30 và 60.
Ta có:\(\frac{a}{b}=1\frac{1}{2}=>\frac{a}{b}=\frac{3}{2}=>\frac{a}{3}=\frac{b}{2}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{3}=\frac{b}{2}=\frac{a-b}{3-2}=\frac{8}{1}=8\)
\(=>\frac{a}{3}=8=>a=24\)
và \(\frac{b}{2}=8=>b=16\)
Vậy 2 số đó là 24 và 16
Ta có :
\(1\frac{1}{2}=\frac{3}{2}\)
Hiệu số phần bằng nhau là :
3 - 2 = 1 ( phần )
Số bé là :
8 : 1 x 2 = 16
Số lớn là :
8 : 1 x 3 = 24
Đáp Số : số lớn : 24
Số bé : 16
Có a - b = 8 (1)
Tỉ số của a và b = \(\dfrac{3}{2}\)
=> \(\dfrac{a}{b}=\dfrac{3}{2}\)
=> \(a=\dfrac{3}{2}.b\)
Thay a = \(\dfrac{3}{2}.b\) vào (1), ta có:
\(\dfrac{3}{2}b-b=8\)
<=> \(\dfrac{1}{2}b=8< =>b=16\)
<=> a = 24
Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Trường hợp 2
Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\)
\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)
Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
\(a-b=2\left(a+b\right)=\frac{a}{b}\)
\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)
a-b=2(a+b)
a-b=2a+2b
3b=a
Another way :
a-b=2(a+b)
=> -2b - b -2a + a =0
-(3b+a)=0
3b+a=0
Do đó :3b-b= 3b/b = 3 nên b = 3/4
b = 3/4 nên a = - 9/4
\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)
Đổi \(1\frac{1}{2}=\frac{3}{2}\).
Ta có sơ đồ:
Số a: !______!______!______!
Số b: !______!______!..... 8...!
Hiệu số phần bằng nhau là: 3 - 2 = 1 (phần)
Số a = 8 : 1 x 3 = 24
Sô b = 8 : 1 x 2 = 16
Bài 1:
\(0,0\left(8\right)=\frac{1}{10}\cdot0,\left(8\right)=\frac{1}{10}\cdot0,\left(1\right)\cdot8=\frac{4}{5}\cdot\frac{1}{9}=\frac{4}{45}\)
\(0,1\left(2\right)=0,1+0,0\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(2\right)=\frac{1}{10}+\frac{1}{10}\cdot0,\left(1\right)\cdot2=\frac{1}{10}+\frac{1}{5}\cdot\frac{1}{9}=\frac{1}{10}+\frac{1}{45}=\frac{11}{90}\)
\(0,1\left(23\right)=0,1+0,\left(23\right)=\frac{1}{10}+0,\left(01\right)\cdot23=\frac{1}{10}+\frac{1}{99}\cdot23=\frac{1}{10}+\frac{23}{99}=\frac{329}{990}\)
ta có 1\(\frac{1}{2}\)=\(\frac{3}{2}\)
ta có a:b=\(\frac{3}{2}\)
a=\(\frac{3}{2}\)*b
mà a-b=8
hay \(\frac{3}{2}\)*b-b*1=8
b*(\(\frac{3}{2}\)-1)=8
b*\(\frac{1}{2}\)=8
b=8:\(\frac{1}{2}\)
b=16
a=16*\(\frac{3}{2}\)
a=24
\(1\frac{1}{2}=\frac{3}{2}\)
số a là:
8 : (3 - 2) x 3 = 24
số b là:
24 - 8 = 16