K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Giả sử a > b > 0 \(=>\frac{1}{a}< \frac{1}{b}=>\frac{1}{a}-\frac{1}{b}< 0;\frac{1}{a-b}>0\)

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

 Trường hợp 2

Giả sử a < b \(=>\frac{1}{a}>\frac{1}{b}=>\frac{1}{a}-\frac{1}{b}>0;\frac{1}{a-b}< 0\) 

\(=>\frac{1}{a}-\frac{1}{b}\ne\frac{1}{a-b}\)

Vậy không tồn tại hay không có hai số nguyên dương a , b khác nhau sao cho \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

22 tháng 6 2017

\(a-b=2\left(a+b\right)=\frac{a}{b}\)

\(\hept{\begin{cases}a-b=2\left(a+b\right)\\2\left(a+b\right)=\frac{a}{b}\end{cases}}\)

a-b=2(a+b)

a-b=2a+2b

3b=a

Another way :

a-b=2(a+b)

=> -2b - b -2a + a =0

-(3b+a)=0

3b+a=0

Do đó :3b-b= 3b/b = 3 nên b = 3/4

b = 3/4 nên a = - 9/4

\(\Leftrightarrow\hept{\begin{cases}b=\frac{3}{4}\\a=-\frac{9}{4}\end{cases}}\)

29 tháng 5 2017

\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{b-a}{ab}=\frac{1}{a-b}\)

\(\Leftrightarrow\frac{\left(b-a\right)\left(a-b\right)}{ab\left(a-b\right)}=\frac{ab}{\left(a-b\right)ab}\)

\(\Leftrightarrow-\left(b-a\right)^2=ab\)

\(\Leftrightarrow-b^2+2ab-a^2=ab\)

\(\Leftrightarrow\)\(ab=a^2+b^2\)

Từ đây dùng cô-si : \(a^2+b^2\ge4ab\)

Vậy không có số dương a,b thỏa mãn

29 tháng 5 2017

ukm,bằng?

22 tháng 6 2017

Bài 1 :

Ta có :

\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\Rightarrow\dfrac{b-a}{ab}=\dfrac{1}{a-b}\)

\(\Rightarrow\left(b-a\right)\left(a-b\right)=ab.1\Rightarrow-\left(a-b\right)\left(a-b\right)=ab\)

\(\Rightarrow-\left(a-b\right)^2=ab\)

\(-\left(a-b\right)^2\le0\) với mọi a, b ko thể cùng dương

Vậy ko tồn tại 2 số dương a,b khác nhau để thõa mãn đề bài

22 tháng 6 2017

Bài 1:

Trường hợp 1 :

Giả sử a > b > 0 \(=>\) \(\dfrac{1}{a}< \dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}< 0\) ; \(\dfrac{1}{a-b}>0\)

\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)

Trường hợp 2 :

Giả sử a < b \(=>\dfrac{1}{a}>\dfrac{1}{b}=>\dfrac{1}{a}-\dfrac{1}{b}>0\) ; \(\dfrac{1}{a-b}< 0\)

\(=>\dfrac{1}{a}-\dfrac{1}{b}\ne\dfrac{1}{a-b}\)

Vậy không tồn tại hai số nguyên dương a và b khác nhau sao cho \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)

17 tháng 9 2015

1. a chia het cho 20 va 12 suy ra a chia het cho 2;3;4;5.

vi 2

2 . 3 =6; 2 .4 =8

suy ra a chia 20 ko the  du 8

a chia 12 ko the du 6 

2.

=4a - 4b + 7b

=4 . [a - b] + 7b

a - b chia het cho 7 ; 7b chia het cho 7 suy ra 4a + 3b chia het cho 7

3.

a    3n - 3 + chia het n -1

      3[n - 1] + 7 chia het n - 1

      vi 3[n - 1]chia het chgo 7 suy ra 7 chia het n -1

vay n = 8     

17 tháng 9 2015

- à ừ vậy giải từng bài 1

Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0
22 tháng 6 2021

Có a - b = 8 (1)

Tỉ số của a và b = \(\dfrac{3}{2}\)

=> \(\dfrac{a}{b}=\dfrac{3}{2}\)

=> \(a=\dfrac{3}{2}.b\)

Thay a = \(\dfrac{3}{2}.b\) vào (1), ta có:

\(\dfrac{3}{2}b-b=8\)

<=> \(\dfrac{1}{2}b=8< =>b=16\)

<=> a = 24

22 tháng 6 2021

ghi rõ đề ra em ơi

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

Hai số nguyên đối nhau thì thỏa mãn đề bài, ví dụ: 2\( \vdots \)(-2)và (-2)\( \vdots \)2

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:a/ n + 3 CHIA HẾT CHO n - 1b/ 4n + 3 CHIA HẾT CHO 2n + 1c/ (n + 5)(n - 3) = 15BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ...
Đọc tiếp

BÀI 1: SỐ HỌC SINH KHỐI 6 CỦA TRƯỜNG KHI XẾP THÀNH 12 HÀNG, 15 HÀNG HAY 18 HÀNG ĐỀU DƯ RA 9 HỌC SINH. HỎI SỐ HỌC SINH KHỐI 6 TRƯỜNG ĐÓ LÀ BAO NHIÊU ? BIẾT RẰNG SỐ ĐÓ LỚN HƠN 300 VÀ NHỎ HƠN 400.

BÀI 2: TÌM SỐ TỰ NHIÊN n SAO CHO:

a/ n + 3 CHIA HẾT CHO n - 1

b/ 4n + 3 CHIA HẾT CHO 2n + 1

c/ (n + 5)(n - 3) = 15

BÀI 3: CHO p LÀ SỐ NGUYÊN TỐ VÀ MỘT TRONG 2 SỐ 8p + 1 VÀ 8p - 1 LÀ HAI SỐ NGUYÊN TỐ. HỎI SỐ NGUYÊN TỐ THỨ 3 LÀ SỐ NGUYÊN TỐ HAY HỢP SỐ ?

BÀI 4: TÌM SỐ NGUYÊN TỐ p SAO CHO p + 10 VÀ p + 14 LÀ CÁC SỐ NGUYÊN TỐ.

BÀI 5: A/ TÌM HAI SỐ TỰ NHIÊN a, b BIẾT BCNN (a, b) = 300, ƯCLN (a, b) = 15

          B/ TÌM HAI SỐ TỰ NHIÊN a VÀ b BIẾT a, b = 2940 VÀ BCNN (a, b) = 210

BÀI 5: HỎI QUA n ĐIỂM PHÂN BIỆT CÓ BAO NHIÊU ĐOẠN THẲNG BIẾT CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG.

BÀI 6: CHO n ĐIỂM PHÂN BIỆT ( n ≥ 2, n Є N ) CỨ QUA 2 ĐIỂM TA VẼ ĐƯỢC 1 ĐOẠN THẲNG VÀ QUA n ĐIỂM VẼ ĐƯỢC TẤT CẢ 300 ĐOẠN THẲNG. HỎI n BẰNG BAO NHIÊU ?

BÀI 7: CHO ĐOẠN THẲNG CD. TRÊN TIA ĐỐI CỦA TIA CD LẤY ĐIỂM A. TRÊN TIA ĐỐI CỦA TIA DC LẤY ĐIỂM B SAO CHO AC = BD. CHỨNG TỎ: AD = BC

 

 

0