cho tam giác ABC có góc A=50 góc B=20.Trên tia phân giác BE của góc ABC lấy điểm F sao cho góc FAB=20
a,chứng minh tam giác AEF cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vẽ hình ra nha
ta có:ˆAFEAFE^ là góc ngoài tam giác AFB tại đỉnh F
⇒ˆAFE=ˆFAB+ˆABF⇒AFE^=FAB^+ABF^
TA CÓ: GÓC FAB =20độ
góc ABF= 10 độ do BE là phân giác của góc ABC
⇒ˆAFE=20O+10O=30O⇒AFE^=20O+10O=30O
Ta có: ˆBAF+ˆFAE=ˆBACBAF^+FAE^=BAC^
TA cũng có: ˆBAF=20O(GIẢTHUYET)BAF^=20O(GIẢTHUYET)
ˆBAC=50OBAC^=50O
=> ˆFAE=50O−200=30OFAE^=50O−200=30O
xét tam giác FAE có 2 góc ở đáy cùng bằng 30 độ
=> tam giác FAE cân tại E
Bạn đọc lai đề coi có sai chỗ nào không ạ, mình vẽ hình thì nó không vuông góc
Ta có góc CEB là góc ngoài của tam giác AEB
nên \(\widehat{CEB}=50^{^0}+10^0=60^0\)
góc EFA là góc ngoài của tam giác AFB tại đỉnh F
nên \(\widehat{EFA}=20^{0^{ }}+10^{0^{ }}=30^0\)
suy ra góc EAF = góc EFA = 300
suy ta tam giác EAF cân tại E, mà I là trung điểm của AF
suy ra EI vuông góc với AF tại I
suy ra góc AEK= góc KEB=60 độ
Xét tam giác EBK và tam giác EBC có
BE chung; góc AEK= góc KEB (CMT), góc CBE=góc KBC (GT)
suy ra tam giác EBK = tam giác EBC (g.c.g)
suy ra BK=BC
suy ra tam giác BCK cân tại B
suy ra góc KCB = (180độ - góc CBK ) :2 = 80 độ
Xét tam giác BCH có góc BHC= 180 độ - (góc BCH + góc CBH) = 90 độ
vậy BE vuông góc với CK tại H
a: Ta có: AE+BE=AB
AF+FC=AC
mà AB=AC
và BE=FC
nên AE=AF
hay ΔAEF cân tại A
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
=>\(\widehat{AEF}=\widehat{ABC}=\widehat{ACB}\)
a:
Ta có: \(\widehat{ABC}+\widehat{ABE}=180^0\)(hai góc kề bù)
\(\widehat{ACB}+\widehat{ACF}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{ACF}\)
Xét ΔABE và ΔACF có
AB=AC
\(\widehat{ABE}=\widehat{ACF}\)(cmt)
BE=CF
Do đó: ΔABE=ΔACF
=>AE=AF
=>ΔAEF cân tại A
b: Xét ΔBHE vuông tại H và ΔCKF vuông tại K có
BE=CF
\(\widehat{E}=\widehat{F}\)(ΔABE=ΔACF)
Do đó: ΔBHE=ΔCKF
c: Ta có: ΔBHE=ΔCKF
=>BH=CK và \(\widehat{HBE}=\widehat{KCF}\) và EH=KF
Ta có: AH+HE=AE
AK+KF=AF
mà HE=KF và AE=AF
nên AH=AK
Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
AH=AK
Do đó: ΔAHI=ΔAKI
=>IH=IK
=>ΔIHK cân tại I
vẽ hình ra nha
ta có:\(\widehat{AFE}\) là góc ngoài tam giác AFB tại đỉnh F
\(\Rightarrow\widehat{AFE}=\widehat{FAB}+\widehat{ABF}\)
TA CÓ: GÓC FAB =20độ
góc ABF= 10 độ do BE là phân giác của góc ABC
\(\Rightarrow\widehat{AFE}=20^O+10^O=30^O\)
Ta có: \(\widehat{BAF}+\widehat{FAE}=\widehat{BAC}\)
TA cũng có: \(\widehat{BAF}=20^O\left(GIẢTHUYET\right)\)
\(\widehat{BAC}=50^O\)
=> \(\widehat{FAE}=50^O-20^0=30^O\)
xét tam giác FAE có 2 góc ở đáy cùng bằng 30 độ
=> tam giác FAE cân tại E
bạn trả lời đi