cho Δ1 :x+2y+4=0
Δ2 : 2x-y+6=0
a,Tính góc giữa 2 đường thẳng Δ1,Δ2
b,Tính KC từ A (3;1) tới đường thẳng Δ1
c,Xét vị trí tương đối của Δ1 và Δ2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1→(2;1); n2→(5;-2)
Góc giữa hai đường thẳng (Δ1) và (Δ2) là:
Chọn C.
Ta có:
Vậy góc giữa hai đường thẳng Δ1, Δ2 là 45 ° .
Cách 1:
Δ1: y = –2x + 4 ⇔ 2x + y – 4 = 0
Δ2: ⇔ x - 2y + 3 = 0
Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1→(2;1); n2→(1;-2)
Góc giữa (Δ1) và (Δ2):
Cách 2:
Δ1: y = –2x + 4 có hệ số góc k1 = –2
Δ2: có hệ số góc k2 = 1/2
Nhận thấy k1.k2 = –1 nên Δ1 ⊥ Δ2 ⇒ (Δ1, Δ2) = 90°.
Đáp án D
Mặt cầu (S) có tâm I 1 ; − 2 ; 0 và bán kính R = 21
Đường thẳng Δ 1 có vtcp u 1 → = 2 ; − 3 ; 2 và đường thẳng Δ 2 có vtcp u 2 → = 1 ; 1 ; − 1
Mặt phẳng α có vtcp n → = u 1 → , u 2 → = 1 ; 4 ; 5 ⇒ α : x + 4 y + 5 z + m = 0
Do tiếp xúc với mặt cầu (S) nên
d I , α = 21 ⇔ 1 + 4. − 2 + 5.0 + m 1 2 + 4 2 + 5 2 = 21 ⇔ m = 7 + 21 2 m = 7 − 21 2
Do α cắt trục Oz tại điểm có cao độ dương ta có phương trình của α : x + 4 y + 5 z + 7 − 21 2 = 0
Thay tọa độ A vào 2 pt đường thẳng không thỏa mãn, vậy đó là 2 pt đường thẳng của các cạnh BC và CD
\(\Rightarrow\) Khoảng cách từ A đến 2 đường thẳng nói trên bằng độ dài 2 cạnh của hcn
\(\Rightarrow S=d\left(A;\Delta_1\right).d\left(A;\Delta_2\right)=\dfrac{\left|3-2.\left(-1\right)+1\right|}{\sqrt{1^2+\left(-2\right)^2}}.\dfrac{\left|2.3-1\right|}{\sqrt{2^2+1^2}}=6\)