K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2022

A

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

NV
15 tháng 2 2019

Áp dụng công thức biến tích thành tổng:

\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)

\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos^2a\)

9 tháng 8 2019

1) \(sin\left(A+2B+C\right)=sin\left(\pi-B+2B\right)\)

=\(sin\left(\pi+B\right)=sin\left(-B\right)=-sinB\)

2) \(sinBsinC-cosBcosC=-cos\left(B+C\right)\)

\(=-cos\left(\pi-A\right)=cosA\)

9 tháng 8 2019

4) bạn ơi +2 vào vế phải mới đúng nhé

2+ \(2cosAcosBcosC=\left[cos\left(A+B\right)+cos\left(A-B\right)\right]cosC+2\)

\(=cos\left(\pi-C\right)cosC+cos\left(A-B\right)cos\left(\pi-\left(A+B\right)\right)+2\)

=\(-cos^2C-cos\left(A-B\right)cos\left(A+B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(cos2A+cos2B\right)+2\)

\(=-cos^2C-\frac{1}{2}\left(2cos^2A-1\right)-\frac{1}{2}\left(2cos^2B-1\right)+2\)

\(=-cos^2C-cos^2A+\frac{1}{2}-cos^2C+\frac{1}{2}+2\)

= sin2C - 1 + sin2A - 1 + sin2C - 1 + 3

= sin2A + sin2B + sin2C

NV
13 tháng 4 2021

1.

\(2cos\left(a+b\right)=cosa.cos\left(\pi+b\right)\)

\(\Leftrightarrow2cosa.cosb-2sina.sinb=-cosa.cosb\)

\(\Leftrightarrow2sina.sinb=3cosa.cosb\Rightarrow4sin^2a.sin^2b=9cos^2a.cos^2b\)

\(\Rightarrow4\left(1-cos^2a\right)\left(1-cos^2b\right)=9cos^2a.cos^2b\)

\(\Leftrightarrow4-4\left(cos^2a+cos^2b\right)=5cos^2a.cos^2b\)

\(A=\dfrac{1}{cos^2a+2\left(sin^2a+cos^2a\right)}+\dfrac{1}{cos^2b+2\left(sin^2b+cos^2b\right)}\)

\(=\dfrac{1}{2+cos^2a}+\dfrac{1}{2+cos^2b}=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+cos^2a.cos^2b}\)

\(=\dfrac{4+cos^2a+cos^2b}{4+2\left(cos^2a+cos^2b\right)+\dfrac{4}{5}-\dfrac{4}{5}\left(cos^2a+cos^2b\right)}=\dfrac{4+cos^2a+cos^2b}{\dfrac{24}{5}+\dfrac{6}{5}\left(cos^2a+cos^2b\right)}=\dfrac{5}{6}\)

NV
13 tháng 4 2021

2.

\(A=2cos\dfrac{2x}{3}\left(cos\dfrac{2\pi}{3}+cos\dfrac{4x}{3}\right)=2cos\dfrac{2x}{3}\left(cos\dfrac{4x}{3}-\dfrac{1}{2}\right)\)

\(=2cos\dfrac{2x}{3}.cos\dfrac{4x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x+cos\dfrac{2x}{3}-cos\dfrac{2x}{3}\)

\(=cos3x\)

\(B=\dfrac{cos2b-cos2a}{cos^2a.sin^2b}-tan^2a.cot^2b=\dfrac{1-2sin^2b-\left(1-2sin^2a\right)}{cos^2a.sin^2b}-tan^2a.cot^2b\)

\(=\dfrac{2sin^2a-2sin^2b}{cos^2a.sin^2b}-tan^2a.cot^2b=2tan^2a\left(1+cot^2b\right)-2\left(1+tan^2a\right)-tan^2a.cot^2b\)

\(=2tan^2a+2tan^2a.cot^2b-2-2tan^2a-tan^2a.cot^2b\)

\(=tan^2a.cot^2b-2\)

16 tháng 4 2019

ta thấy cos12o = sin78o nên cos212o = sin278o

Sau khi biến đổi ta được: S= sin278o + cos278o + sin289o + cos289o=2

đáp án C

NV
21 tháng 3 2022

\(cos\left(a+b\right)=\dfrac{1}{2}\Rightarrow cosa.cosb-sina.sinb=\dfrac{1}{2}\)

\(cos\left(a-b\right)=-1\Rightarrow cosa.cosb+sina.sinb=-1\)

Cộng vế:

\(\Rightarrow2cosa.cosb=-\dfrac{1}{2}\Rightarrow cosa.cosb=-\dfrac{1}{4}\)