Cho hình vẽ bên với Ay song song với BC, BC song song với Dz và Bx song song với CD. Chứng minh rằng góc xAy bằng góc CDz.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét ΔABC có
N là trung điểm của BC
M là trung điểm của AB
Do đó: NM là đường trung bình
=>NM//AC
hay NM//EF
Ta có: ME⊥AC
NF⊥AC
Do đó: ME//NF
Xét tứ giác MEFN có
ME//FN
MN//FE
Do đó: MEFN là hình bình hành
Suy ra: ME=NF
b: Ta có: MEFN là hình bình hành
nên MN=EF
Ở cùng phía của đoạn AB vẽ góc ABx=góc ABy=120 độ. Trên tia Ax và Bx lần lượt lấy C và D sao cho AC=BD. Chứng minh:a)BC=DA b) góc BCD=góc ADC
Cho góc xOy nhọn có tia phân giác Ot. Trên cạnh Oy lấy hai điểm B và C sao cho OB<OC. Trên cạnh Õ lấy điểm A sao cho OA=OB, AC cắt Ot ở M. Chứng minh: góc OAM= góc OBM b) BM kéo dài cắt Ox ở D chứng minh:Oc=OD c) gọi I là trung điểm của CD. Có nhận xét gì về tia OI chứng minh 3 điểm O,M,I thẳng hàng
a:
BD//AC
=>\(\widehat{DBA}=\widehat{BAC}\)(hai góc so le trong)(1)
CB//AD
=>\(\widehat{CBA}=\widehat{DAB}\)(hai góc so le trong)(2)
AB là phân giác của góc CAD
=>\(\widehat{CAB}=\widehat{DAB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{DBA}=\widehat{CBA}\)
Xét ΔACB và ΔADB có
\(\widehat{DBA}=\widehat{CBA}\)
BA chung
\(\widehat{CAB}=\widehat{DAB}\)
Do đó: ΔACB=ΔADB
=>AC=AD và BC=BD
b: Xét ΔAHB vuông tại H và ΔAKB vuông tại K có
AB chung
\(\widehat{HAB}=\widehat{KAB}\)
Do đó: ΔAHB=ΔAKB
=>BH=BK
c: Xét tứ giác AHBK có
\(\widehat{AHB}+\widehat{AKB}+\widehat{KAH}+\widehat{KBH}=360^0\)
=>\(\widehat{KBH}+60^0+90^0+90^0=360^0\)
=>\(\widehat{KBH}=360^0-90^0-90^0-60^0=120^0\)
Gọi giao của BC và AD là H
Xét ΔHCD có AB//CD
nên HB/BC=HA/AD
mà HB<HA
nên BC<AD