Giải và biện luận phương trình sau :
\(mx^2-3x=x^2+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(mx-2)(2mx-x+1)=0
=>\(x^2\cdot2m^2-mx^2+mx-4mx+2x-2=0\)
=>\(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)
TH1: m=0
Phương trình sẽ trở thành: \(0x^2+x\cdot\left(-3\cdot0+2\right)-2=0\)
=>2x-2=0
=>x=1
TH2: m=1/2
Phương trình sẽ trở thành: \(0x^2+x\left(-3\cdot\dfrac{1}{2}+2\right)-2=0\)
=>1/2x-2=0
=>x=4
TH3: \(m\notin\left\{0;\dfrac{1}{2}\right\}\)
Phương trình sẽ là \(x^2\left(2m^2-m\right)+x\left(-3m+2\right)-2=0\)
\(\text{Δ}=\left(-3m+2\right)^2-4\left(2m^2-m\right)\cdot\left(-2\right)\)
\(=9m^2-12m+4+8\left(2m^2-m\right)\)
\(=9m^2-12m+4+16m^2-8m\)
\(=25m^2-20m+4=\left(5m-2\right)^2\)>=0 với mọi m
Phương trình sẽ có hai nghiệm phân biệt khi 5m-2<>0
=>m<>2/5
Phương trình sẽ có nghiệm kép khi 5m-2=0
=>\(m=\dfrac{2}{5}\)
Với \(m=0\)
\(PT\Leftrightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-3\right)=m+1\)
PT vô nghiệm \(\Leftrightarrow m+1< 0\Leftrightarrow m< -1\)
PT có nghiệm kép \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
\(\Leftrightarrow x=-\dfrac{b'}{a}=\dfrac{m-1}{2m}\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow m+1>0\Leftrightarrow m>-1;m\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{m-1+\sqrt{m+1}}{m}\\x=\dfrac{m-1-\sqrt{m+1}}{m}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+1\right)y=m+1\\my=2-2x\end{matrix}\right.\)
Nếu m=0 thì hệ sẽ là y=0+1=1 và 2-2x=0
=>y=1 và x=1
Nếu m<>0 thì \(\left\{{}\begin{matrix}y=\dfrac{-2x+2}{m}\\x\cdot m+\left(m+1\right)\cdot\dfrac{-2x+2}{m}=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot m+x\cdot\dfrac{-2\left(m+1\right)}{m}+\dfrac{2m+2}{m}=m+1\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(m+\dfrac{-2m-2}{m}\right)=m+1-\dfrac{2m+2}{m}=\dfrac{m^2+m-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{m^2-2m-2}{m}=\dfrac{m^2-m-2}{m}\\y=\dfrac{-2x+2}{m}\end{matrix}\right.\)
Nếu m^2-2m-2=0 thì hệ vô nghiệm
Nếu m^2-2m-2<>0 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m}\cdot\dfrac{m^2-m-2}{m^2-2m-2}+\dfrac{2}{m}=\dfrac{-2m^2+2m+4+2m^2-4m-4}{m\left(m^2-2m-2\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m^2-m-2}{m^2-2m-2}\\y=-\dfrac{2}{m^2-2m-2}\end{matrix}\right.\)
c: =>(m-1)x+2y=3m-1 và (2m+2)x-2y=2-2m
=>(3m+1)x=m+1 và y=(m+2)x+m-1
Nếu m=-1/3 thì hệ vô nghiệm
Nếu m<>-1/3 thì hệ sẽ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}x=\dfrac{m+1}{3m+1}\\y=\dfrac{m^2+3m+2}{3m+1}+m-1=\dfrac{m^2+3m+2+3m^2-3m+m-1}{3m+1}=\dfrac{4m^2+m+1}{3m+1}\end{matrix}\right.\)
(mx - 2)*(2mx - x + 1) = 0
tương đương với tuyển hai pt:
*mx - 2 = 0 (a)
+nếu m = 0: (a) vô nghiệm
+nếu m # 0: (a) có nghiệm x = 2 / m.
*2mx - x + 1 = 0
<=>(2m - 1)x + 1 = 0 (b)
+nếu m = 1 / 2: (b) vô nghiệm
+nếu m # 1/2: (b) có nghiệm x = -1 / (2m - 1)
*xét 2 / m = -1 /(2m - 1)
<=> m = 2 / 5.
Kết luận:
+nếu m = 0 => S = {1} (lấy được nghiệm của b)
+nếu m = 1 / 2 => S = {4}
+nếu m = 2 / 5 => S = {5}
+nếu m # 0; m # 1 /2 và m # 2 / 5 => S = {2/m , -1 /(2m-1)}
m(x – 2) = 3x + 1
⇔ mx – 2m = 3x + 1
⇔ mx – 3x = 1 + 2m
⇔ (m – 3).x = 1 + 2m (1)
+ Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất
+ Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.
Kết luận:
+ với m = 3, phương trình vô nghiệm
+ với m ≠ 3, phương trình có nghiệm duy nhất
(2m + 1)x – 2m = 3x – 2
⇔ (2m + 1)x – 3x = 2m – 2
⇔ (2m + 1 – 3).x = 2m – 2
⇔ (2m – 2).x = 2m – 2 (3)
+ Xét 2m – 2 ≠ 0 ⇔ m ≠ 1, pt (3) có nghiệm duy nhất
+ Xét 2m – 2 = 0 ⇔ m = 1, pt (3) ⇔ 0.x = 0, phương trình có vô số nghiệm.
Kết luận :
+ Với m = 1, phương trình có vô số nghiệm
+ Với m ≠ 1, phương trình có nghiệm duy nhất x = 1.
\(mx^2-3x=x^2+1\Leftrightarrow\left(m-1\right)x^2-3x-1=0\)
Nếu m =1 thì \(\left(m-1\right)x^2-3x-1=0\) có dạng \(-3x-1=0\) và có nghiệm \(x=-\frac{1}{3}\)
Nếu m \(\ne\)1 thì \(\left(m-1\right)x^2-3x-1=0\) là phương trình bậc hai ẩn x, có \(\Delta=4m+5\)
* Nếu \(\Delta<0\) hay là \(m<-\frac{5}{4}\) thì \(\left(m-1\right)x^2-3x-1=0\) vô nghiệm
* Nếu \(\Delta\ge0\) hay là \(m\ge-\frac{5}{4}\) ; \(m\ne1\) thì
\(\left(m-1\right)x^2-3x-1=0\) \(\Leftrightarrow x=\frac{3-\sqrt{4m+5}}{2\left(m-1\right)}:=x_1\) hoặc \(x=\frac{3+\sqrt{4m+5}}{2\left(m-1\right)}:=x_2\)
Ta có kết luận :
* Khi \(m<-\frac{5}{4}\) thì phương trình vô nghiệm
* Khi \(m=1\) thì phương trình có một nghiệm \(x=-\frac{1}{3}\)
* Khi \(m\ge-\frac{5}{4};m\ne1\) thì phương trình có hai nghiệm \(x=x_1;_{ }\) \(x=x_2\)