Cho hình vẽ
biết: \(\widehat{N_1}-\widehat{M_1}=72^o\).
Tính \(\widehat{M_2},\)\(\widehat{N_2}\)
mình đag cần rất gấp. mọi ng giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì a // b nên \(\widehat {{M_1}} = \widehat {{N_1}}\); \(\widehat {{M_4}} = \widehat {{N_4}}\) ( 2 góc đồng vị) mà \(\widehat {{N_3}} = \widehat {{N_1}}\) ; \(\widehat {{N_4}} = \widehat {{N_2}}\) ( 2 góc đối đỉnh) nên \(\widehat {{M_1}}\) =\(\widehat {{N_3}}\); \(\widehat {{M_4}}\) =\(\widehat {{N_2}}\)
b) Vì a // b nên \(\widehat {{M_2}} = \widehat {{N_2}};\widehat {{M_3}} = \widehat {{N_3}}\) ( 2 góc đồng vị), mà \(\widehat {{N_1}} + \widehat {{N_2}} = 180^\circ ;\widehat {{N_3}} + \widehat {{N_4}} = 180^\circ \) ( 2 góc kề bù) nên \(\widehat {{M_2}} + \widehat {{N_1}}\) = 180\(^\circ \); \(\widehat {{M_3}} + \widehat {{N_4}}\)= 180\(^\circ \)
Chú ý:
Nếu đường thẳng c cắt cả hai đường thẳng song song a và b thì:
+ Hai góc so le ngoài bằng nhau
+ Hai góc trong cùng phía có tổng số đo bằng 180\(^\circ \)
ta có : a \(\perp\) P và b \(\perp\) Q \(\Rightarrow\)a//b
M1 và N1 là cặp góc trong cùng phía bù nhau
\(\Rightarrow\)M1= \(^{180^0}\)- N1= 180- \(65^0\)= 115
a) Ta thấy tam giác AMN cân tại A do AM = AN
\( \Rightarrow \widehat {{M_1}} = ({180^o} - \widehat {{A_1}}):2 = ({180^o} - {42^o}):2 = {69^o}\)
Ta thấy tam giác PMN = tam giác AMN ( c-c-c )
\( \Rightarrow \widehat {{M_1}} = \widehat {PMN} = {69^o}\) (góc tương ứng )
Mà \( \Rightarrow \widehat {{M_1}} + \widehat {{M_2}} + \widehat {PMN} = {180^o}\)( các góc kề bù )
\( \Rightarrow \widehat {{M_2}} = {180^o} - {69^o} - {69^o} = {42^o}\)
Mà tam giác MPB cân tại M do MB = MP nên
\( \Rightarrow \widehat {{B_1}} = \widehat {MPB}\)
Áp dụng định lí tổng 3 góc trong tam giác
\( \Rightarrow \widehat {{B_1}} = ({180^o} - {42^o}):2 = {69^o}\)
b) Ta thấy \(\widehat {{B_1}}\)và \(\widehat {{M_1}}\)ở vị trí đồng vị và bằng nhau nên
\( \Rightarrow \)MN⫽BC
Vì tam giác PMN = tam giác AMN nên ta có
\( \Rightarrow \widehat {{M_1}} = \widehat {ANM} = \widehat {PMN} = \widehat {MNP}\)( do 2 tam giác cân và bằng nhau )
Mà \(\widehat {MNA}\)và\(\widehat {PMN}\) ở vị trí so le trong
\( \Rightarrow \)MP⫽AC
c) Ta có \(\Delta AMN = \Delta PMN = \Delta MBP(c - g - c)\)(1)
Vì MP⫽AC ( chứng minh trên )
\( \Rightarrow \widehat {MPN} = \widehat {PNC}\) ( 2 góc so le trong ) =\({42^o}\)
\( \Rightarrow \Delta MPN = \Delta NCP(c - g - c)\)(2)
Từ (1) và (2) \( \Rightarrow \) 4 tam giác cân AMN, MBP, PMN, NCP bằng nhau
Ra rồi đây.
Ta có: \(\widehat{B}+\widehat{C}+\widehat{A}=180\) độ
\(\Rightarrow4\widehat{A}+4\widehat{A}+\widehat{A}=180\)độ
\(\Rightarrow9\widehat{A}=180\Rightarrow\widehat{A}=180:9=20\)độ
Ta có : \(\widehat{B}+\widehat{C}=180^o-\widehat{A}=180^o-75^o=105^o\)
a/ \(\widehat{B}=2\widehat{C}\Rightarrow2\widehat{C}+\widehat{C}=105^o\Rightarrow3\widehat{C}=105^o\Rightarrow\widehat{C}=35^o\Rightarrow\widehat{B}=70^o\)
b/ \(\widehat{B}-\widehat{C}=25^o\Rightarrow\widehat{B}=\widehat{C}+25^o\Rightarrow\widehat{C}+25^o+\widehat{C}=105^o\Rightarrow2\widehat{C}=80^o\Rightarrow\widehat{C}=40^o\Rightarrow\widehat{B}=65^o\)
2.
Giải: Ta có : \(\widehat{xOy}+\widehat{yOx'}=180^0\)(kề bù)
=> \(\widehat{yOx'}=180^0-\widehat{xOy}=180^0-80^0=100^0\)
=> \(\widehat{xOy}< \widehat{xOy'}\)(800 < 1000)
Vậy ....
3.
Giải: Ta có: \(\widehat{aOb}+\widehat{bOc}=90^0\)(phụ nhau )
hay 2.\(\widehat{bOC}+\widehat{bOc}=90^0\)
=> \(\widehat{bOc}.\left(2+1\right)=90^0\)
=> \(\widehat{bOc}.3=90^0\)
=> \(\widehat{bOc}=90^0:3=30^0\)
=> \(\widehat{aOb}=90^0-30^0=60^0\)
Vậy ...
Ta có : a // b
=> M1 và N1 là cặp góc trong cùng phía
Mà N1 - M1 = 72o => N1 = M1 + 72o
=> ( M1 + 72o ) + M1 = 180o
=> 2 . M1 + 72o = 180o
=> 2 . M1 = 108o
=> M1 = 54o
Mà M1 và M2 là 2 góc kề bù
=> M1 + M2 = 180o mà M1 = 54o
=> 54o + M2 = 180o
=> M2 = 126o
Mà M2 và N2 là cặp góc trong cùng phía
=> M2 + N2 = 180o mà M2 = 126o
=> 126o + N2 = 180o
=> N2 = 54o