tìm m để pt 3sinx +m^2 - 2 =0 có nghiệm thuộc (-pi/3;pi/2)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
5 tháng 9 2020
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
AN
0
LP
0
=> \(\sin x=\frac{2-m^2}{3}\) (*)
khi \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) => \(\sin x\in\left(\frac{-\sqrt{3}}{2};1\right)\)
Để (*) có nghiệm \(x\in\left(\frac{-\pi}{3};\frac{\pi}{2}\right)\) <=> \(\frac{2-m^2}{3}\in\left(\frac{-\sqrt{3}}{2};1\right)\)
<=> \(\frac{-\sqrt{3}}{2}\le\frac{2-m^2}{3}\le1\Leftrightarrow\frac{-3\sqrt{3}}{2}\le2-m^2\le3\Leftrightarrow\frac{-3\sqrt{3}-4}{2}\le-m^2\le1\)
<=> \(-1\le m^2\le\frac{4+3\sqrt{3}}{2}\Leftrightarrow-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\)
Vậy với \(-\sqrt{\frac{4+3\sqrt{3}}{2}}\le m\le\sqrt{\frac{4+3\sqrt{3}}{2}}\) thì pt .....
C. Tây ban-nha, Bồ-đào-nha