K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2015

a) Ta thấy : 4/5 < 1 ; 15/14 > 1 

nên 4/5 < 15/14

b) Ta thấy : 89/88 > 1 ; 100/101 < 1 

nên 89/88 > 100/101

c) Ta có : 300/901 < 300/900 = 1/3

nên 300/901 < 1/3

d) Ta có : 5/10 = 1/2 = 1000/2000

Ta thấy 1000/2000 < 1001/2000

nên 5/10 < 1001/2000

3 tháng 3 2021
Zbd jxbdkfksnsnfkf
9 tháng 7 2017

a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)

\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)

\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)

\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)

\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)

\(B=\frac{8}{303}\)

\(A.B=\frac{8}{303}.\frac{3}{200}\)

\(A.B=\frac{1}{2525}\)

b, A = 1/2 x 3/100

B = 2/3 x 4/101

Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2

MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)

Ta có : 1 - 3/100 = 97/100

1 - 4/101 = 97/101

Mà 97/101 < 97/100 => 4/101 > 3/100 (2)

Từ (1) và (2) => B > A

9 tháng 7 2017

a,

\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)

\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)

b,

1/2 < 2/3

3/4 < 4/5

.............

99/100 < 100/101

=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)

28 tháng 4 2017

bài khó nhất nhé

2. Ta có : 

\(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

cộng vào 48 phân số đầu với 1, trừ phân số cuối đi 48 ta được :

\(P=\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+\left(\frac{49}{1}-48\right)\)

\(P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(P=\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+...+\frac{50}{2}\)

\(P=50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}}{50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+...+\frac{1}{2}\right)}=\frac{1}{50}\)

9 tháng 3 2019

câu 5đáp án là72

22 tháng 1 2018

M=(1.3.5.7.....99)/(2.4.6.8.....100)

số số hạng của tử = (99-1)/2 +1 = 50 -> 1.3.5.7....99= (99+1)*50/2 =2500

số số hạng của mẫu =  (100-2)/2+1 =50 -> 2.4.6.8....100= (100+2)*50/2 =2550

-->  M= 2500/2550 =50/51

Làm tương tự với N ta có kq N=51/52 ->M/N= 2600/2601 -> M<N

22 tháng 1 2018

bấm phân số kiểu j z bạn

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)

Học good

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)

\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}\)

\(=-\frac{101}{200}\)