K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2015

thế thì chúc bạn may mắn nha

1 tháng 9 2015

Trong câu hỏi tương tự nha"kaitolupin"

29 tháng 9 2014

trả lời hộ mình nhé thank you nhiều ngày mai nộp bài rồi

 

22 tháng 5 2016

Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)

Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0. Suy ra: 28 số như thế thì tận cùng vẫn là 0.

Mà trong tổng (trừ số 1) có 30 số hạng. 

=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)

A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)

Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9

Vậy A ko phải là số chính phương.

3 tháng 10 2021

Tham khảo: Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

3 tháng 10 2021

tks bn

26 tháng 6 2016

Loại trừ số 1 ra thì tổng này có: (30-1):1+1=30 (số hạng)

Ta thấy: tổng của 4 số liên tiếp nhau (tính từ 3^1) có tận cùng là 0.

Suy ra: 28 số như thế thì tận cùng vẫn là 0.

Mà trong tổng (trừ số 1) có 30 số hạng.

=> Tổng có tận cùng là 2. (vì theo quy luật tính từ 3^1 thì 4 số liên tiếp sẽ có tận cùng là 3, 9, 7, 1 rồi lại 3, 9, 7, 1, suy ra 2 số hạng còn lại của tổng là 3^29 và 3^30 thì có tận cùng lần lượt là 3, 9 cộng vào tận cùng là 2, 28 số hạng kia tận cùng là 0 cộng 2 vào nữa thì bằng 2)

A= 1+3^1+3^2+3^3+...+3^30 có tận cùng là 3 (tự suy nhé)

Mà số chính phương thì tận cùng là 1, 4, 5, 6, 9 Vậy A ko phải là số chính phương. 

26 tháng 6 2016

3A=3+3^2+...+3^31

=> 2A= 3A-A

=> 2A= 3^31-1

=> A= (3^31-1):2

Xét 3^31 = (3^4)^7x3^3=87^7x27=(...1)x27=(....7)

=> A= [ (...7) -1 ] :2= (...6):2=(...3)

Vì số chính phương không tận cùng là 3 => A không phải số chính phương

16 tháng 5 2015

3S = 3 +3^2 +3^3+...+3^31 => 2S= 3^31-1 

                              3^31= [3^4]^7 x 3^3 = [...1] ^7 x 27  = [...1] x 27 = [...7] => 2S có tận cùng là 7-1 = 6

=> S có tc là 3 hoặc 8       mà scp ko có tc là 3 hoặc 8 => S ko phải là scp

10 tháng 9 2021

bạn giang hồ đại ca làm giỏi quá

2 tháng 10 2016

A = (1 + 31 + 32 + 33) + (3+ 3+36 + 37) + ...+ (324 + 325 + 326 + 327) + (328 + 229 + 330)

A = (1 + 31 + 32 + 33) + 34.(1 + 31 + 32 + 33) + ...+ 324.(1 + 31 + 32 + 33) + (328 + 229 + 330)

A = 40 + 34.40 + ....+ 324.40 + (328 + 229 + 330)

A = 40.(1 + 34 + ...+ 324) + (328 + 229 + 330)

Nhận xét: 40.(1 + 34 + ...+ 324) có tận cùng là 0

328 = (34)= 817 = (...1)

329 = 328.3 = (...1).3 = (....3)

330 = 328.3= (...1).9 = (...9)

=> A = (...0) + (...1) + (....3) + (...9) = (....3) 

A có tận cùng là chữ số 3 nên A không thể là số chính phương.

28 tháng 3 2020

I DON'T MATHS!!

OK!!!

( ͡° ͜ʖ ͡°)

(▀̿Ĺ̯▀̿ ̿)

¯\_(ツ)_/¯

3 tháng 8 2021

Ta có A = 1 + 3 + 32 + 33 + ... + 330

\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{31}\)

\(\Rightarrow3A-A=\left(3+3^2+3^3+3^4+...+3^{31}\right)-\left(1+3+3^2+3^3+...+3^{30}\right)\)

\(\Rightarrow2A=3^{31}-1\)

\(\Rightarrow A=\frac{3^{31}-1}{2}\)

Ta có 331 - 1 = 328.33 - 1 = (34)7 . 27 - 1 = 

= (...1)7.27 - 1 = (...1).27 - 1 = (...7) - 1 = (...6)

\(\Rightarrow A=\frac{3^{31}-1}{2}=\frac{\overline{...6}}{2}=\overline{...3}\)

\(\Rightarrow\)A không là số chính phương 

3 tháng 8 2021

em nào đụ với anh ko

5 tháng 11 2016

Ta có :

1 + 31 + 32 + 33 + 34 ... + 330

= 1 + 31 +  2 + 3 + 4 .. + 30

= 1 + 3465

Tận cùng của 3465

cứ 5 chữ số 3 nhân với nhau thì có tận cùng là 3 . Vì 465 chia hết cho 5 nên tận cùng của 3465 là 3 

3 + 1 = 4 nên tận cùng của 1 + 3465 = 4 

Các đặc điểm của số chính phương :

Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.

  • Khi phân tích một số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
  • Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
  • Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)(a-b).
  • Số ước nguyên dương của số chính phương là một số lẻ.
  • Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
  • Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...

S thỏa mãn các điều kiện trên nên S là số chính phương