Tìm số có 3 chữ số biết nếu viết theo chiều ngược lại thì được số mới hơn số ban đầu là 792 đơn vị
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chữ số hàng chục là chữ số lớn nhất chỉ chia hết cho \(1\)và chính nó nên chữ số hàng chục là chữ số \(7\).
Gọi số cần tìm là: \(\overline{a7b}\).
Ta có: \(\overline{b7a}-\overline{a7b}=693\)
\(\Leftrightarrow99\left(b-a\right)=693\)
\(\Leftrightarrow b-a=7\).
Suy ra \(a=1,b=8\)hoặc \(a=2,b=9\).
Vậy có hai số thỏa mãn yêu cầu bài toán là: \(178,279\).
số tự nhiên có 2 chữ số đó là:
13x3=49
đáp số:49
ab là số cần tìm
b-a=4(1)
ab +ba =132 (2) gọi b+a =c2 ,(2)<=> b+a= c*10+2 <=> (c*10+2)*10+c*10+2=132<=> 110c+22=132 <=> c=1
=> b+a=12=>a=12-b
thế a=12-b vào (1) : b-12+b=4=> b=8 => a=4
Gọi số cần tìm là ab (a,b ∈ N,1 ≤ a ≤ 9,0 ≤ b ≤ 9)
Theo đầu bài, ta có ab - ba = 45 <=> 10a + b - 10b - a = 45
<=> 9a - 9b = 45 <=> a - b = 5
Lại có a6b - ab = 240 <=> 100a + 60 + b - 10a - b = 240
<=> 90a = 180 <=> a = 2
<=> b = 2 - 5 = -3
Mà a,b ∈ N => Vô lí
Vậy không tồn tại số ab
Gọi số đã cho là \(\overline{ab}\) (a;b là các chữ số)
Theo bài ra, ta có:
\(\hept{\begin{cases}a+b=11\\\overline{ba}-\overline{ab}=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\10b+a-\left(10a+b\right)=27\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=11\\9b-9a=27\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=11\\b-a=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=7\end{cases}}\)(thỏa mãn)
Vậy số đã cho là 47
\(\)
số ban đau la 159
159 số ban đầu vì :
951 - 159 = 792