Cho tam giác ABC có AD, BE, CF là các đường phân giác trong. Gọi giao điểm của DE và CF là M; giao điểm DF và BE là N. Chứng minh rằng AD là tia phân giác của góc MAN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Cho hình bình hành ABCD. Gọi O là giao điểm của hai đường chéo AC và BD. Trên AB lấy điểm E, trên CD lấy điểm F sao cho AE = CF.
a) Chứng minh E đối xứng với F qua O.
b) Từ dựng Ex // AC cắt BC tại I, dựng Fy //AC cắt AD tại K. Chứng minh I và K đối xứng với nhau qua O.
1) a. Vì ABCD là hình bình hành có O là giao điểm 2 đường chéo AC, BD nên O là trung điểm AC.
Tứ giác AECF có: AE//CF và AE=CF nên là hình bình hành.
Mà O là trung điểm AC nên cũng là trung điểm EF.
Vậy E, F đối xứng nhau qua O.
b. Ta có: ˆKFD=ˆACD
ˆACD=ˆCAB
ˆCAB=ˆIEB
\Rightarrow ˆKFD=ˆIEB
Chứng minh ΔKDF=ΔIBE (g.c.g)
\Rightarrow KF=IE.
Tứ giác KFIE có KF//IE và KF=IE nên là hình bình hành.
Mà O là trung điểm EF (câu a) nên O là trung điểm IK.
Vậy I và K đối xứng nhau qua O.
Lại còn phải cm định lý à, xem lại lớp 7. Trong tam giác, 3 đường cao của tam giác cùng đi qua 1 điểm
sorry mk ko bít làm dù đag hok lớp 7!!!!!!!
5645756
Link hình: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1224).png
Áp dụng định lý Menelaus cho bộ ba điểm (K,E,D) thằng hàng của \(\Delta\)AMC, ta được: \(\frac{KM}{KC}.\frac{EC}{EA}.\frac{DA}{DM}=1\Rightarrow\frac{KM}{KC}=\frac{EA}{EC}.\frac{DM}{DA}\)(1)
Tương tự đối với bộ ba điểm (H,D,F) thẳng hàng trong \(\Delta\)AMB, ta được: \(\frac{HB}{HM}.\frac{DM}{DA}.\frac{FA}{FB}=1\Rightarrow\frac{HB}{HM}=\frac{FB}{FA}.\frac{DA}{DM}\)(2)
Tiếp tục áp dụng định lý Ceva cho ba đường thẳng AD, BE, CF đồng quy tại M trong \(\Delta\)ABC, ta có: \(\frac{DC}{DB}.\frac{FB}{FA}.\frac{EA}{EC}=1\Rightarrow\frac{DC}{DB}=\frac{FA}{FB}.\frac{EC}{EA}\)(3)
Từ (1), (2), (3) suy ra \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)
\(\Delta\)BMC có \(\frac{KM}{KC}.\frac{HB}{HM}.\frac{DC}{DB}=1\)nên ba đường thẳng MD, BK, CH đồng quy (định lý Ceva đảo)
Vậy AD, BK và CH đồng quy (đpcm)