a) Tính: A=2cot370.cot530+sin2280-\(\dfrac{3tan54^0}{cot36^0}\)+sin2620
b) Sắp xếp các TSLG sau theo thứ tự tăng dần
Sin450, cos600, sin650, cos720, tan650
( không dùng máy tính cầm tay)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.6
a) \(\cos14^0=\sin76^0\)
\(\cos87^0=\sin3^0\)
Do đó: \(\cos87^0< \sin47^0< \cos14^0< \sin78^0\)
b) \(\cot25^0=\tan65^0\)
\(\cot38^0=\tan52^0\)
Do đó: \(\cot38^0< \tan62^0< \cot25^0< \tan73^0\)
Bài 2:
Sửa đề: \(\sin\alpha=\dfrac{3}{5}\)
Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\left(\dfrac{3}{5}\right)^2=1-\dfrac{9}{25}=\dfrac{16}{25}\)
\(\Leftrightarrow\cos\alpha=\dfrac{4}{5}\)
Ta có: \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)
\(=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{5}\cdot\dfrac{5}{4}=\dfrac{3}{4}\)
Ta có: \(\cot\alpha=\dfrac{1}{\tan\alpha}\)
\(=\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
a, Ta có: cos 88 0 < sin 40 0 (= cos 50 0 ) < cos 28 0 < sin 65 0 (= cos 25 0 ) < cos 20 0
b, Ta có: cot 67 0 18 ' (= tan 22 0 42 ' ) < tan 32 0 48 ' < tan 56 0 32 ' < cot 28 0 36 ' (= tan 61 0 24 ' )
\(cos56^0=sin34^0;cos47^0=sin43^0\)
\(\Rightarrow sin18^0< sin34^0< sin43^0< sin79^0\)
\(\Rightarrow sin18^0< cos56^0< cos47^0< sin79^0\)
\(\sin18^0< \sin34^0=\cos56^0< \sin43^0=\cos47^0< \sin79^0\)
a) Ta có: \(A=2\cdot\cot37^0\cdot\cot53^0+\sin^228^0+\sin^262^0-\dfrac{3\cdot\tan54^0}{\cot36^0}\)
\(=2\cdot\tan53^0\cdot\cot53^0+\sin^228^0+\cos^228^0-\dfrac{3\cdot\tan54^0}{\tan54^0}\)
\(=2+1-3\)
=0