K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

cậu chia từng câu ra cho mình nhé

31 tháng 1 2017

a )\(A=\frac{x^2+4x+4}{x^2-4}=\frac{\left(x+2\right)^2}{x^2-2^2}=\frac{\left(x+2\right)^2}{\left(x+2\right)\left(x-2\right)}=\frac{x+2}{x-2}=\frac{5}{3}\)

<=> (x + 2).3 = (x - 2).5

<=> 3x + 6 = 5x - 10

<=> 3x - 5x = - 10 - 6

<=> - 2x = - 16

=> x = 8

b ) \(\frac{x+2}{x-2}=\frac{\left(x-2\right)+4}{x-2}=1+\frac{4}{x-2}\)

đến đây tự tìm đc 

Bài 2 lớp 8 ko làm đc thì đi chết đi

2 tháng 11 2017

bài 1:

a) (x+1)^2-(x-1)^2-3(x+1)(x-1)

=(x+1+x-1)(x+1-x+1)-3x^2-3

=2x^2-3x^2-3

=-x^2-3

AH
Akai Haruma
Giáo viên
10 tháng 8 2023

Lời giải:

$(x-5)(x+5)-(x+3)^2+3(x-2)^2=(x+1)^2-(x-4)(x+4)+3x^2$

$\Leftrightarrow x^2-25-(x^2+6x+9)+3(x^2-4x+4)=(x^2+2x+1)-(x^2-16)+3x^2$
$\Leftrightarrow 3x^2-18x-22=3x^2+2x+17$

$\Leftrightarrow -18x-22=2x+17$

$\Leftrightarrow 20x=-39$

$\Leftrightarrow x=\frac{-39}{20}$

Bài 1: 

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{4};-\dfrac{1}{4}\right\}\)

Ta có: \(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\)

\(\Leftrightarrow\dfrac{-3\left(4x+1\right)}{\left(4x-1\right)\left(4x+1\right)}=\dfrac{2\left(4x-1\right)}{\left(4x+1\right)\left(4x-1\right)}-\dfrac{6x+8}{\left(4x-1\right)\left(4x+1\right)}\)

Suy ra: \(-12x-3=8x-2-6x-8\)

\(\Leftrightarrow-12x-3-2x+10=0\)

\(\Leftrightarrow-14x+7=0\)

\(\Leftrightarrow-14x=-7\)

\(\Leftrightarrow x=\dfrac{1}{2}\)(nhận)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

13 tháng 8 2023

a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))

\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)

\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)

\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)

\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)

\(A=\dfrac{-5}{x-3}\)

b) Ta có: \(\left|x\right|=1\)

TH1: \(\left|x\right|=-x\) với \(x< 0\)

Pt trở thành:

\(-x=1\) (ĐK: \(x< 0\)

\(\Leftrightarrow x=-1\left(tm\right)\)

Thay \(x=-1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)

TH2: \(\left|x\right|=x\) với \(x\ge0\)

Pt trở thành:

\(x=1\left(tm\right)\) (ĐK: \(x\ge0\)

Thay \(x=1\) vào A ta có:

\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)

c) \(A=\dfrac{1}{2}\) khi:

\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow-10=x-3\)

\(\Leftrightarrow x=-10+3\)

\(\Leftrightarrow x=-7\left(tm\right)\)

d) \(A\) nguyên khi:

\(\dfrac{-5}{x-3}\) nguyên

\(\Rightarrow x-3\inƯ\left(-5\right)\)

\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)

a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)

\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)

\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)

\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)

b: |x|=1

=>x=-1(loại) hoặc x=1(nhận)

Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)

c: A=1/2

=>x-3=-10

=>x=-7

d: A nguyên

=>-5 chia hết cho x-3

=>x-3 thuộc {1;-1;5;-5}

=>x thuộc {4;2;8;-2}

7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

26 tháng 7 2020

\(\left(x-2\right):2.3=6\)

\(\Leftrightarrow\left(x-2\right):2=2\)

\(\Leftrightarrow\left(x-2\right)=4\)

\(\Leftrightarrow x=4+2=6\)

c) ta có

\(\left[\left(2x+1\right)+1\right]m:2=625\)

\(\Leftrightarrow\left[\left(2x+1\right)+1\right]\left\{\left[\left(2x+1\right)-1\right]:2+1\right\}=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-1:2+1=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-2+1=1250\)

\(\Leftrightarrow\left(2x+1\right)^2+1-2=1249\)

\(\Leftrightarrow\left(2x+1\right)^2+1=1251\)

\(\Leftrightarrow\left(2x+1\right)^2=1250\)

...

2

\(\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{7}{4}-\frac{1}{2}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right).\frac{5}{3}=\frac{5}{4}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}:\frac{5}{3}\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)=\frac{5}{4}.\frac{3}{5}\)

\(\Leftrightarrow x-\frac{1}{2}=\frac{3}{4}\)

\(\Leftrightarrow x=\frac{3}{4}+\frac{1}{2}=\frac{5}{4}\)