tìm mọi n thuộc Z để 3n+2/4n-5 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
a/
Với $n$ nguyên, để $\frac{-18}{n}$ là số nguyên thì $n$ là ước của $-18$
$\Rightarrow n\in \left\{\pm 1; \pm 2; \pm 3; \pm 6; \pm 9; \pm 18\right\}$
b.
Với $n$ nguyên, để $\frac{n+7}{3n-1}$ nguyên thì:
$n+7\vdots 3n-1$
$\Rightarrow 3(n+7)\vdots 3n-1$
$\Rightarrow (3n-1)+22\vdots 3n-1$
$\Rightarrow 22\vdots 3n-1$
$\Rightarrow 3n-1\in\left\{\pm 1; \pm 2; \pm 11; \pm 22\right\}$
$\Rightarrow n\in \left\{\frac{2}{3}; 0; 1; \frac{-1}{3}; 4; \frac{-10}{3}; \frac{23}{3}; -7\right\}$
Do $n$ nguyên nên $n\in\left\{0; 1; 4; -7\right\}$
a/ Để \(\frac{n+3}{n-2}\) âm => \(\frac{n+3}{n-2}<0\) mà n - 2 < n + 3 => n - 2 < 0 => n < 2
Vậy n < 2 thì \(\frac{n+3}{n-2}\) là số âm.
b/ Để \(\frac{n+7}{3n-1}\) nguyên => n + 7 chia hết cho 3n - 1
=> 3 (n + 7) chia hết cho 3n - 1
=> 3n + 21 chia hết cho 3n - 1
=> 22 chia hết cho 3n - 1
=> 3n - 1 ∈ Ư(22)
=> 3n - 1 ∈ { ±1 ; ±2 ; ±11 ; ±22 }
- Nếu 3n - 1 = 1 => 3n = 2 => n = 2/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = -1 => 3n = 0 => n = 0 (thỏa mãn)
- Nếu 3n - 1 = 2 => 3n = 3 => n = 1 (thỏa mãn)
- Nếu 3n - 1 = -2 => 3n = -1 => n = -1/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 11 => 3n = 12 => n = 4 (thỏa mãn)
- Nếu 3n - 1 = -11 => 3n = -10 => n = -10/3 (ko thỏa mãn n ∈ Z)
- Nếu 3n - 1 = 22 => 3n = 23 => n = 23/3 (ko thỏa mãnn ∈ Z)
- Nếu 3n - 1 = -22 => 3n = -21 => n = -7 (thỏa mãn)
Vậy n ∈ { 0 ; 1 ; 4 ; -7 } thì \(\frac{n+7}{3n-1}\) là số nguyên.
c/ Để \(\frac{3n+2}{4n-5}\in N\) => 3n + 2 chia hết cho 4n - 5
=> 4 (3n + 2) chia hết cho 4n - 5
=> 12n + 8 chia hết cho 4n - 5
=> 23 chia hết cho 4n - 5
=> 4n - 5 ∈ Ư(23)
=> 4n - 5 ∈ { 1 ; 23 }
- Nếu 4n - 5 = 1 => 4n = 6 => n = 3/2 (ko thoả mãn n ∈ Z)
- Nếu 4n - 5 = 23 => 4n = 28 => n = 7 (thỏa mãn)
Vậy n = 7 thì \(\frac{3n+2}{4n-5}\in N\)
\(\frac{4n-1}{3n}\)là số nguyên<=>\(4n-1⋮3n\)
Ta có \(4n-1⋮3n\Rightarrow12n-3⋮3n\)
Mà \(12n⋮3n\Rightarrow3⋮3n\)
\(\Rightarrow3n\inƯ_{\left(3\right)}\)
\(\Rightarrow3n\in\){1;-1;3;-3}
\(\Rightarrow n\in\){1;-1}
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
gọi uoc chung cua 3n + 4 va 4n+5 là x
ta co
3n+4chia het cho x suy ra 12n+16 chia het cho x
4n+5 chia het cho x suy ra 12n+15 chia het cho x
suy ra 12n+16-12n+15=1 chia het cho x suy ra x =1
vay 4n+5 và 3n+4 nguyen to cung nhau
Gọi ƯCLN (3n+4,4n+5) là d ( d thuộc N*)
suy ra 3n+4 chia hết cho d , 4n+5 chia hết cho d.
Xét 3n+4 chia hết cho d
suy ra 4(3n+4) chia hết cho d
hay 12n+16 chia hết cho d (1)
4n+5chia hết cho d
suy ra 3(4n+5) chia hết cho d
hay 12n+15 chia hết cho d (2)
(1),(2) suy ra (12n+16)-(12n+15)chia hết cho d.
1 chia hết cho d
suy ra d=1
suy ra ƯCLN(3n+4,4n+5)=1
Vậy 3n+4,4n+5 là 2 số nguyên tố cùng nhau
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Để 3n+2/4n-5 là số nguyên => 3n+2 chia hết cho 4n-5
=> 4(3n+2) chia hết cho 4n-5
=> 12n+8 chia hết cho 4n-5
=> 3(4n-5)+23 chia hết cho 4n-5
=> 23 chia hết cho 4n-5
=> 4n-5 thuộc Ư(23)={1;-1;23;-23}
Bạn chia TH ra sẽ ra là 1 và 7 nhé (sau khi đã loại các TH là phân số)
Vào link này lập nik lazi nhé
https://lazi.vn/users/dang_ky?u=kieu-anh.pham4