K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

Mình không có bút ở đây nên gợi ý cho bạn xíu xíu nhé.

Lấy M đối xứng với C qua A => MC = 2 AC = 2 AB

=> MBA  vuông tại B 

Kẻ BH vuông góc AC tại H => BH = h 

Ta có  sin a . cos a  = BH . HC / BC^2 =  h .  HC / BC^2

=> h^2 / 4 sin a cos a  = h.BC^2 / 4HC 

Ta phải chứng minh S ABC = h^2 / 4 sin a cos a

<=> BH .AC /2  = h.BC^2 / 4HC

<=> 2 AC .HC= BC^2

<=> CM . HC = BC^2 (hệ thức lượng) 

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

8 tháng 8 2015

Gọi \(h_a;h_b\)là đường cao ứng với cạnh BC và AC.

\(\frac{h_b^2}{\sin\alpha.\cos\alpha}=\frac{\left(\frac{h_b}{\sin\alpha}\right)^2}{\frac{\cos\alpha}{\sin\alpha}}=\frac{\left(\frac{BC\sin\alpha}{\sin\alpha}\right)^2}{\cot\alpha}=\frac{BC}{\cot\alpha}.BC=\frac{2h_a\cot\alpha}{\cot\alpha}.BC\)

\(=2h_a.BC=4.\frac{1}{2}h_a.BC=4S_{ABC}\)