Giải giúp mình bài này với. Thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số học sinh khối 7 của trường là:
\(\dfrac{2}{5}\) x 588=168 (học sinh)
Số học sinh khối 9 của trường là:
87,5% x 168=147 (học sinh)
Số học sinh khối 8 của trường là:
\(\dfrac{2}{5}\) x(168+147)= \(\dfrac{2}{5}\) x315=126 (học sinh)
Số học sinh khối 6 của trường là:
588-168-147-126=147 (học sinh)
Vậy trường đó có 147 học sinh khối 6
Giải:
Số h/s khối 7 là:
\(588.\dfrac{2}{7}=168\) (h/s)
Số h/s khối 9 là:
\(168.87,5\%=147\) (h/s)
Số h/s khối 8 là:
\(\left(168+147\right).\dfrac{2}{5}=126\) (h/s)
Số h/s khối 6 là:
\(588-\left(168+147+126\right)=147\) (h/s)
Chúc bạn học tốt!
Thời gian đi tỉ lệ nghịch với vận tốc.
Tỉ lệ vận tốc đi và về là: 50/60 = 5/6.
Thời gian đi và về sẽ tỉ lệ nghịch với 5/6, tức là 6/5.
Gọi thời gian đi là 6 phần, thời gian về sẽ là 5 phần. Hiệu số phần là: 6 - 5 = 1 (phần).
Hiệu thời gian là 1 phần ứng với 18 phút = 0,3 giờ.
Vậy 1 phần = 0,3 giờ
=> Thời gian đi là: 0,3 x 6 = 1,8 giờ
Thời gian về là 0,3 x 5 = 1,5 giờ.
Quãng đường AB là 1,8 x 50 = 90 km
Thời gian đi tỉ lệ nghịch với vận tốc.
Tỉ lệ vận tốc đi và về là: 50/60 = 5/6.
Thời gian đi và về sẽ tỉ lệ nghịch với 5/6, tức là 6/5.
Gọi thời gian đi là 6 phần, thời gian về sẽ là 5 phần. Hiệu số phần là: 6 - 5 = 1 (phần).
Hiệu thời gian là 1 phần ứng với 18 phút = 0,3 giờ.
Vậy 1 phần = 0,3 giờ
=> Thời gian đi là: 0,3 x 6 = 1,8 giờ
Thời gian về là 0,3 x 5 = 1,5 giờ.
Quãng đường AB là 1,8 x 50 = 90 km
-7-2x=37-(-24)
-7-2x=61
-2x=61+7
-2x=68
x=68:(-2)
x=-34
k cho mình nhé
Bài 6:
a) \(x^2-2x+4=\left(x^2-2x+1\right)+3=\left(x-1\right)^2+3>0\forall x\)
b) \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\forall x\)
c) \(\left(x-2\right)\left(x-4\right)+3=x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2>0\forall x\)
d) \(-2x^2+5x-19=\dfrac{-4x^2+10x-38}{2}=\dfrac{-\left(4x^2-10x+6,25\right)-31,75}{2}=\dfrac{-\left(2x-2,5\right)^2-31,75}{2}< 0\forall x\)
Câu 5:
\(a^3+b^3=3ab-1\\ \Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\\ \Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\\ \Leftrightarrow\left(a+b+1\right)\left(a^2+b^2+1-ab-a-b\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a+b+1=0\left(vô.lí.do.a,b>0\right)\\a^2+b^2+1-ab-a-b=0\left(1\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\\ \Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)
Vậy \(T=\left(1-2\right)^{2020}+\left(1-1\right)^{2021}=\left(-1\right)^{2020}+0=1\)
Ta có: \(x^3+y^3-9xy=0\)
⇔ \(\left(x+y\right)^3-3xy\left(x+y\right)-9xy=0\)
⇔ \(\left(x+y\right)^3=9xy+3xy\left(x+y\right)\)
⇔ \(\left(x+y\right)^3=3xy[\left(x+y\right)+3]\)
⇒ \(\left(x+y\right)^3⋮x+y+3\)
⇔ \(\left(x+y\right)^3+3^3-3^3⋮x+y+3\)
Theo phân tích hằng đẳng thức: (x+y)\(^3\) + 3\(^3\) \(⋮\)x + y + 3
Suy ra: 3\(^3\) \(⋮\) x + y + 3 (1)
Vì x, y ∈ N❉ ⇒ x + y + 3 ≥ 5 (2)
Từ (1);(2) ⇒ x + y + 3 ∈ { 9 ; 27 }
⇒ x + y ∈ { 6 ; 24 }
Nếu x + y = 6 ⇒ 3xy = \(\dfrac{\left(x+y\right)^3}{x+y+3}=24\) ⇒ xy = 8
Áp dụng hệ thức Viete suy ra x,y là nghiệm của pt: \(x^2-6x+8=0\)
⇒ ( x,y ) = ( 2,4 ) và hoán vị
Nếu x + y = 24 ⇒ 3xy = \(\dfrac{\left(x+y\right)^3}{x+y+3}=512\)
⇒ \(xy=\dfrac{512}{3}\notin N\) ( loại )
Vậy ( x , y )=( 2 , 4 ) và hoán vị