350+1 có phải là tích của 2 số tự nhiên liên tiếp không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hỏi gì nhìu thế !!
1.
a) Tích của 3 số tự nhiên liên tiếp thì chia hết cho 3 vì trong 3 số đó luôn có 1 số chia hết cho 3 nên 1990 không thể là tích của 3 số tự nhiên liên tiếp vì:
1 + 9 + 9 + 0 = 19 ( không chia hết cho 3 )
b) 3 số tự nhiên liên tiếp thì bao giờ cũng có 1 số chẵn vì vậy mà tích của chúng là 1 số chẵn mà 1995 là 1 số lẻ do vậy không phải là tích của 3 số tự nhiên liên tiếp.
c) Tổng của 3 số tự nhiên liên tiếp thì sẽ bằng 3 lần số ở giữa do đó số này phải chia hết cho 3.
Mà 1993 = 1 + 9 + 9 + 3 = 22 ( Không chia hết cho 3 )
Nên số 1993 không là tổng của 3 số tự nhiên liên tiếp.
a)
Nếu một trong hai số chia hết cho 3 thì tích chia hết cho 3 (tức là chia 3 dư 0)
Nếu cả hai số đều không chia hết cho 3 thì sẽ có 1 số chia cho 3 dư 1, số kia chia cho 3 dư 2 (vì là hai số tự nhiên liên tiếp) => tích của chúng chia cho 3 dư 2.
b)
350 +1 chia 3 dư 1 nên nó không thể là tích của 2 số tự nhiên liên tiếp, vì nếu là tích của 2 số tự nhiên liên tiếp thì nó chia cho 3 dư 0 hoặc dư 2 (theo câu a)
Đặt tích 2 số tự nhiên liên tiếp là \(a\left(a+1\right)=a^2+a\)
Ta sẽ xét xem tích 2 số tự nhiên liên tiếp chia cho 3 dư bao nhiêu.
TH1: a chia hết cho 3
\(\Rightarrow\)a2 chia hết cho 3 và a cũng chia hết cho 3
\(\Rightarrow a^2+a\) chia hết cho 3
\(\Rightarrow a\left(a+1\right)\) chia hết cho 3
TH2: a chia 3 dư 1 -> a có dạng 3k+1
\(\Rightarrow a^2=\left(3k+1\right)^2=\left(3k+1\right)\left(3k+1\right)=\left(3k+1\right)3k+\left(3k+1\right).1=9k^2+3k+3k+1\)\(=3.\left(3k^2+k+k\right)+1\)
\(\Rightarrow a^2+a=3.\left(3k^2+k+k\right)+1+3k+1=3.\left(3k^2+k+k+k\right)+1+1=3.\left(3k^2+3k\right)+2\)
Thấy \(3.\left(3k^2+3k\right)+2\) chia 3 dư 2
\(\Rightarrow a^2+a\) chia 3 dư 2
\(\Rightarrow a\left(a+1\right)\) chia 3 dư 2
TH3: a chia 3 dư 2
\(\Rightarrow a^2=\left(3k+2\right)^2=\left(3k+2\right)\left(3k+2\right)=\left(3k+2\right).3k+\left(3k+2\right).2=9k^2+6k+6k+4\) \(=3.\left(3k^2+2k+2k\right)+4\)
\(\Rightarrow a^2+a=3.\left(3k^2+2k+2k\right)+4+3k+2=3.\left(3k^2+2k+2k+k\right)+6\)
\(=3.\left(3k^2+5k\right)+3.2=3.\left(3k^2+5k+2\right)\) chia hết cho 3
Như vậy tích 2 số tự nhiên liên tiếp luôn chia hết cho 3 hoặc chia 3 dư 2.
Mà \(\left(-3\right)^{20}+1=3^{20}+1\) chia 3 dư 1
Vậy \(\left(-3\right)^{20}+1\) không phải tích 2 số tự nhiên liên tiếp.
Không vì 320 +1 chia cho 3 dư 1.
Mà 2 số tự nhiên liên tiếp chia hết cho 3 hoặc chia 3 dư 2(tự chứng minh).
Vậy 320+1 không phải là tích 2 số tự nhiên liên tiếp.
tích 2 stn liên tiếp chia 3 dư 0 hoặc 2
mà 350+1 chia 3 dư 1 nên ko là tích 2 stn liên tiếp
Bạn giải thích tại sao Tích 2 số tn liên tiếp chia 3 dư 0 hoặc 2 đi, hay là bạn chỉ chép lời giải trong ''nâng cao và phát triển toán 8'' thôi?
Tích của 2 số tự nhiên liên tiếp hoặc là chia hết cho 3, hoặc chia cho 3 dư 2 (bạn tự chứng minh).
Vì số 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp
Để chứng minh tích 2 số liên tiếp chia 3 hoặc hết dư 0 hoặc dư 2.
Goi a là số chia hết cho 3
số 2 liên tiếp của nó sẽ là a+1 và a+2 hiển nhiên không chia hết dư 1 hoặc dư 2
Xét tích
Trường hợp 1
a(a+1) rõ rang chia 3 dư 0 rồi
Tường hợp 2
(a+1)(a+2) = \(a^2+3a+2\) thì ta thấy ngay nếu lấy \(a^2+ 3a+2\) chia cho 3 thì sẽ dư ra 2. Vì a là số chia hết cho 3 mà