tổng S = 1 + 2 +3 + .... + 198 + 199 mn giúp mik vs cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng là :
(199-1) : 1 + 1= 199 ( số số hạng )
Tổng là :
199 . ( 199 + 1 ) : 2 = 19900
vậy tổng S = 19900
Số số hạng là:
\(\left(199-1\right)\div1+1=199\) ( số hạng )
Tổng của dãy số trên là:
\(\left(199+1\right).199\div2=19990\)
\(1+2+3+4+5+...+199\)
Số phần tử trong dãy: \(\dfrac{199-1}{1}+1=199\)
Tổng của dãy trên: \((199+1)\cdot199:2=19900\)
\(S=1-2+3-4+...+199-200+201\)
\(=\left(1-2\right)+\left(3-4\right)+...+\left(199-200\right)+201\)
\(=1+1+...+1+201\)
\(=\dfrac{200}{2}+201\)
\(=301\)
=1*200+2*(200-1)+3*(200-2)+...+199(200-198)+200(200-199)
=(1+2+3+...+200)-(1*2+2*3+...+199*200)
=200*201/2-199*200*201/3
=1353400
Ta có :
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1)
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199)
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2)
* Dễ chứng minh :
....1 + 2 + 3 +...+ n = n(n + 1)/2
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600
Từ đây ta có thể rút ra công thức tổng quát :
1.2 + 2.3 + 3.4 + .. + n(n + 1) = [n(n + 1)(n + 2)]/3
Ta có: \(M=\left(4^{10}+4^{11}\right)+\left(4^{12}+4^{13}\right)+...+\left(4^{198}+4^{199}\right)\)
\(=4^{10}.\left(1+4\right)+4^{12}.\left(1+4\right)+...+4^{198}.\left(1+4\right)\)
\(=4^{10}.5+4^{12}.5+...+4^{198}.5\)
\(=5.\left(4^{10}+4^{12}+...+4^{198}\right)\text{chia hết cho 5}\)
=> M chia hết cho 5
=> M là B(5) => đpcm.
10³ + 2¹⁵
= 1000 + 32768
= 33768
Mà 33768 : 33 = 1023 (dư 9)
Em xem lại đề
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
S = 1 + 2 +3 + .... + 198 + 199
Dãy số trên có tất cả số số hạng là :
( 199 - 1 ) : 1 + 1 = 199 ( số )
Tổng của dãy số trên là :
( 199 + 1 ) x 199 : 2 = 19 900
Giải :
\(S=1+2+3+...+198+199\)
Dãy đó có tất cả số hạng là :
\(\left(199-1\right)\div1+1=199\) (số)
Tổng các số hạng của dãy số đó là :
\(\left(199+1\right)\times199\div2=19900\) (đv)
Đ/s : ..........