mấy bạn ơi giải giùm mình nhé
đặt tính theo hàng dọc
\(\left(xy-1\right)\times\left(xy+5\right)\)
bạn nào giải giùm mk mk like cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi ra đơn vị là j vậy ? Giây hay phút hay giờ ?
Ta có: \(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow x^2y^2+x^2+y^2+1-2\left(x-y\right)\left(xy-1\right)=4+4xy\)
\(\Leftrightarrow\left(x^2y^2-2xy+1\right)+\left(x^2-2xy+y^2\right)-2\left(x-y\right)\left(xy-1\right)=4\)
\(\Leftrightarrow\left(xy-1\right)^2-2\left(x-y\right)\left(xy-1\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(xy-1-x+y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(y-1\right)\right]^2=4\)
\(\Leftrightarrow\left(x+1\right)^2\left(y-1\right)^2=4=1.4\)
Vì \(\left(x+1\right)^2;\left(y-1\right)^2\) là các SCP và đều không âm nên ta chỉ cần xét các TH sau:
TH1: \(\hept{\begin{cases}\left(x+1\right)^2=1\\\left(y-1\right)^2=4\end{cases}}\) => \(\orbr{\begin{cases}x+1=1\\x+1=-1\end{cases}}\) và \(\orbr{\begin{cases}y-1=2\\y-1=-2\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-2\end{cases}}\) và \(\orbr{\begin{cases}y=3\\y=-1\end{cases}}\)
TH2: \(\hept{\begin{cases}\left(x+1\right)^2=4\\\left(y-1\right)^2=1\end{cases}}\) => \(\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\) và \(\orbr{\begin{cases}y-1=1\\y-1=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\) và \(\orbr{\begin{cases}y=2\\y=0\end{cases}}\)
Kết luận:...
\(\left(x^2+1\right)\left(y^2+1\right)+2\left(x-y\right)\left(1-xy\right)=4\left(1+xy\right)\)
\(\Leftrightarrow\left(1-2xy+x^2y^2\right)+2\left(x-y\right)\left(1-xy\right)=4+4xy\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x^2-2xy+y^2\right)=4\)
\(\Leftrightarrow\left(1-xy\right)^2+2\left(x-y\right)\left(1-xy\right)+\left(x-y\right)^2=4\)
\(\Leftrightarrow\left(1-xy+x-y\right)^2=4\)
\(\Leftrightarrow\left[\left(x+1\right)\left(1-y\right)\right]^2=2^2\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)\left(1-y\right)=2\\\left(x+1\right)\left(1-y\right)=-2\end{cases}}\)
Tự xét các TH
\(\left\{{}\begin{matrix}4x^2-4xy+4y^2=4\\x^2+xy+2y^2=4\end{matrix}\right.\)
\(\Rightarrow3x^2-5xy+2y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu:
- Với \(y=x\Rightarrow x^2-x^2+x^2=1\Rightarrow x^2=1\Rightarrow x=...\)
- Với \(y=\frac{3}{2}x\Rightarrow x^2-\frac{3}{2}x^2+\left(\frac{3}{2}x\right)^2=1\Leftrightarrow x^2=\frac{4}{7}\Rightarrow x=...\)
Đặt \(A=3x-xy+y=12\)
\(\Leftrightarrow3x-xy+y-12=0\)
\(\Leftrightarrow x\left(3-y\right)-\left(3-y\right)-9=0\)
\(\Leftrightarrow\left(x-1\right)\left(3-y\right)=9\)
Ta có:\(9=3x3=\left(-3\right)x\left(-3\right)\)
Do đó ta có bảng sau:
x-1 | 3 | -3 |
3-y | 3 | -3 |
x | 4 | -2 |
y | 0 | 6 |
Vậy cặp ( x; y ) TM là:(4;0)(-2;6)
kết quả mình là ;x2y2+4xy-5