tìm m để hàm số \(y=\dfrac{x^3}{3}-\dfrac{mx^2}{2}+2mx-3m+4\) nghịch biến trên một đoạn có độ dài bằng 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(y=-\dfrac{1}{3}x^3-mx^2+4x+2021m\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-m\cdot2x+4\)
=>\(y'=-x^2-2m\cdot x+4\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-2m\right)^2-4\cdot\left(-1\right)\cdot4< =0\\-1< 0\end{matrix}\right.\)
=>\(4m^2+16< =0\)
mà \(4m^2+16>=16>0\forall m\)
nên \(m\in\varnothing\)
b: \(y=-\dfrac{1}{3}\cdot x^3-\dfrac{1}{2}\cdot m\cdot x^2+x+20\)
=>\(y'=-\dfrac{1}{3}\cdot3x^2-\dfrac{1}{2}\cdot m\cdot2x+1\)
=>\(y'=-x^2-m\cdot x+1\)
Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)
=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(-m\right)^2-4\cdot\left(-1\right)\cdot1< =0\\-1< 0\end{matrix}\right.\)
=>\(m^2+4< =0\)
mà \(m^2+4>=4>0\forall m\)
nên \(m\in\varnothing\)
+ Đạo hàm y’ = x2- mx+ 2m
Hàm số nghịch biến trên một đoạn có độ dài là 3 khi và chi khi phương trình y’ =0 có 2 nghiệm x1; x2 ( chú ý hệ số a= 1> 0) thỏa mãn:
x 1 - x 2 = 3 ⇔ ∆ > 0 ⇔ m 2 - 8 m > 0 ( x 1 - x 2 ) 2 = 9 ⇔ S 2 - 4 P = 9 ⇔ m > 8 h a y m < 0 m 2 - 8 m = 9
Chọn A.
Chọn A.
Tập xác định: D = R. Ta có
Ta không xét trường hợp y' ≤ 0, ∀ x ∈ R vì a = 1> 0.
Hàm số nghịch biến trên một đoạn có độ dài là 3 ⇔ y' = 0 có 2 nghiệm x1; x2 thỏa mãn:
Đáp án A
Tập xác đinh: D = ℝ . Ta có y ' = x 2 − m x + 2 m
Ta không xét trường hợp y ' ≤ 0 , ∀ x ∈ ℝ vì a = 1 > 0
Hàm số nghịch biến trên một đoạn có độ dài là 3 ⇔ y ' = 0 có 2 nghiệm x 1 , x 2 thỏa
x 1 − x 2 = 3 ⇔ Δ > 0 ⇔ m 2 − 8 m > 0 x 1 − x 2 2 = 9 ⇔ S 2 − 4 P = 9 ⇔ m > 8 h a y m < 0 m 2 − 8 m = 9 ⇔ m = − 1 m = 9
Để đây là hàm số bậc nhất thì \(\dfrac{m^2}{3-4m}< >0\)
=>\(m\notin\left\{0;\dfrac{3}{4}\right\}\)
Để hàm số \(y=\dfrac{m^2}{3-4m}x+3m-2\) nghịch biến trên R thì
\(\dfrac{m^2}{3-4m}< 0\)
=>3-4m<0
=>-4m<-3
=>\(m>\dfrac{3}{4}\)
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
1: TXĐ: D=R\{3}
\(y=\dfrac{x^2-6x+10}{x-3}\)
=>\(y'=\dfrac{\left(x^2-6x+10\right)'\left(x-3\right)-\left(x^2-6x+10\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{\left(2x-6\right)\left(x-3\right)-\left(x^2-6x+10\right)}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{2x^2-12x+18-x^2+6x-10}{\left(x-3\right)^2}\)
=>\(y'=\dfrac{x^2-6x+8}{\left(x-3\right)^2}\)
Đặt y'<=0
=>\(\dfrac{x^2-6x+8}{\left(x-3\right)^2}< =0\)
=>\(x^2-6x+8< =0\)
=>(x-2)(x-4)<=0
=>2<=x<=4
Vậy: Khoảng đồng biến là [2;3) và (3;4]
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
\(y'=x^2-mx+2m\)
Hàm nghịch biến trên 1 đoạn có độ dài 3 khi và chỉ khi \(y'=0\) có 2 nghiệm pb thỏa mãn:
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-8m>0\\\left(x_1+x_2\right)^2-4x_1x_2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>8\end{matrix}\right.\\m^2-8m=9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=9\end{matrix}\right.\)