tìm GTNN
A=25x^2-10x+5
B=t^2+12t^2-3
giải nốt hộ nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
\(A=4x^2-2.2x.2+4+1\)
\(=\left(2x-2\right)^2+1\)
Thấy : \(\left(2x-2\right)^2\ge0\)
\(A=\left(2x-2\right)^2+1\ge1\)
Vậy \(MinA=1\Leftrightarrow x=1\)
\(B=\left(5x\right)^2-2.5x.1+1-4\)
\(=\left(5x-1\right)^2-4\)
Thấy : \(\left(5x-1\right)^2\ge0\)
\(\Rightarrow B=\left(5x-1\right)^2-4\ge-4\)
Vậy \(MinB=-4\Leftrightarrow x=\dfrac{1}{5}\)
\(C=\left(7x\right)^2-2.7x.2+4-5\)
\(=\left(7x-2\right)^2-5\)
Thấy : \(\left(7x-2\right)^2\ge0\)
\(\Rightarrow C=\left(7x-2\right)^2-5\ge-5\)
Vậy \(MinC=-5\Leftrightarrow x=\dfrac{2}{7}\)
\(1.\)
\(A=-x^2-10x+1=-\left(x^2+10x-1\right)\)
\(=-\left(x^2+2.5x+5^2-5^2-1\right)=-\left[\left(x+5\right)^2-26\right]\)
\(=-\left(x+5\right)^2+26\le26\) dấu "=" xảy ra<=>x=-5
\(B=-4x^2-6x-5=-4\left(x^2+\dfrac{6}{4}x+\dfrac{5}{4}\right)\)
\(=-4\left(x^2+2.\dfrac{3}{4}x+\dfrac{9}{16}+\dfrac{11}{16}\right)\)\(=-4\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{6}\right]\le-\dfrac{11}{4}\)
\(C=-16x^2+8x-1=-16\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=-16\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)=-16\left(x-\dfrac{1}{4}\right)^2\le0\)
dấu"=" xảy ra<=>x=1/4
b: Ta có: \(B=x^2+4x+9y^2-6y-1\)
\(=x^2+4x+4+9y^2-6y+1-6\)
\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)
Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)
a) =(5x)^2-2*5x+1+3
=(5x-1)^2+3
suy ra min=3
b) = -(x^2-2x+1)-1
=-(x^2-1)^2-1
suy ra Max=-1
c)=(x^2-2x+1)+(y^2-4y+4)+1
=(x^2-1)^2+(y^2-2)^2+1
suy ra Min=1
# mk ko chắc lắm đâu
x2 + y2 + 10x + 6y + 34 = 0
=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0
=> (x + 5)2 + (y + 3)2 = 0
=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Vậy x = - 5 ; y = -3
b) 25x2 + 4y2 + 10x + 4y + 2 = 0
=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0
=> (5x + 1)2 + (2y + 1)2 = 0
=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)
Vậy x = -0,2 ; y = -0,5
a)
\(x^2+10x+25+y^2+6y+9=0\)
\(\left(x+5\right)^2+\left(y+3\right)^2=0\) ( 1 )
Ta có :
\(\left(x+5\right)^2\ge0\forall x\)
\(\left(y+3\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)
\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
b)
\(25x^2+10x+1+4y^2+4y+1=0\)
\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 )
Ta có :
\(\left(5x+1\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall y\)
\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)
\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)
\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)
a) 2x2 - 98 = 0
2x2 = 0 + 98
2x2 = 98
x2 = 98 : 2
x2 = 49
x = \(\sqrt{49}\)
=> x = 7
Ta có : 2x2 - 98 = 0
=> 2(x2 - 49) = 0
Mà : 2 > 0
Nên x2 - 49 = 0
=> x2 = 49
=> x2 = -7;7
Đề bài sai hoặc thiếu
Hoặc là giải pt nghiệm nguyên, hoặc là chỗ \(16y^2\) phải là dấu "+"
Trong trường hợp \(-16y^2\) là \(16y^2\)
\(\Leftrightarrow25x^2+10x+1+16y^2+8y+1=0\)
\(\Leftrightarrow\left(5x+1\right)^2+\left(4y+1\right)^2=0\)
Do \(\left\{{}\begin{matrix}\left(5x+1\right)^2\ge0\\\left(4y+1\right)^2\ge0\end{matrix}\right.\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left(5x+1\right)^2=0\\\left(4y+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x+1=0\\4y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\frac{1}{5}\\y=-\frac{1}{4}\end{matrix}\right.\)
b: Ta có: \(\dfrac{12}{5}:x+\dfrac{4}{3}=3+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{12}{5}:x=3-\dfrac{2}{3}=\dfrac{7}{3}\)
hay \(x=\dfrac{12}{5}:\dfrac{7}{3}=\dfrac{36}{35}\)
\(A=25x^2-10x+5=\left(5x-1\right)^2+4\ge4\)
flo giúp nốt câu kia đi :)
A=25x2-10x+5=25x2-10x+1+4=(5x-1)2+4
ta có: (5x-1)2\(\ge0\)
suy ra (5x-1)2+4\(\ge4\) suy ra GTNN là 4
B=t2+12t2-3=13t2-3
ta có: 13t2\(\ge0\)
suy ra 13t2-3\(\ge-3\)suy ra GTNN là -3