Tìm GTNN của biểu thức B=\(\sqrt{49x^2-22x+9}+\sqrt{49^2+22+9}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\sqrt{\left(7x-\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}+\sqrt{\left(7x+\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}\)
\(B=\sqrt{\left(\frac{11}{7}-7x\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}+\sqrt{\left(7x+\frac{11}{7}\right)^2+\left(\frac{8\sqrt{5}}{7}\right)^2}\)
dùng Bất đẳng thức Bunyakovsky
\(B\ge\sqrt{\left(\frac{22}{7}\right)^2+\left(\frac{16\sqrt{5}}{7}\right)^2}\)
\(B\ge6\)
dấu "=" khi x=0
Bài 2:Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
\(\frac{1}{y}+\frac{1}{z}\ge2\sqrt{\frac{1}{yz}}\)
\(\frac{1}{x}+\frac{1}{z}\ge2\sqrt{\frac{1}{xz}}\)
CỘng theo vế 3 BĐT trên có:
\(2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge2\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\right)\)
Khi x=y=z
Ta có: \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(..........................\)
\(\frac{1}{\sqrt{99}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
Cộng theo vế ta có:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}=\frac{100}{10}=10\)
\(B=l7x-3l+l7x+3l\)
= \(l3-7xl+l7x+3l\) \(\ge l3-7x+7x+3l=6\)
Vậy GTNN là 6 khi -7/3 <= x <= 7/3
\(49x^2-22x+9=\left(7x\right)^2-2.7.\dfrac{11}{7}x+\dfrac{121}{49}+\dfrac{320}{49}\)
\(=\left(7x-\dfrac{11}{7}\right)^2+\dfrac{320}{49}\ge\dfrac{320}{49}\) dấu"=" xảy ra<=>\(x=\dfrac{11}{49}\)
\(=>\sqrt{49x^2-22x+9}\ge\)\(\sqrt{\dfrac{320}{49}}=\dfrac{8\sqrt{5}}{7}\)
\(=>B\ge\dfrac{8\sqrt{5}}{7}+8\sqrt{38}\)