a,Chứng minh rằng (a+1) (a+2)=a2+3a+2
b,Chứng minh rằng \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)là số nguyên,biết a là số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu trên đề sai
\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)
Vậy nó là số nguyên
Ta có \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)
Lại có 2a + 3a2 + a3
=a(2+3a+a2)
= a(a2 + 3a +2)
=a(a2 +a +2a +2)
= a[a(a+1) + 2(a+1)]
=a [(a+1) (a+2)]
= a(a+1)(a+2)
ta thấy a(a+1)(a+2) là tích 3 số nguyên liên tiếp
=> a(a+1)(a+2) \(⋮3\) và \(⋮\)2
mà (2;3)=1
=> a(a+1)(a+2) \(⋮\)6
=> \(\frac{a\left(a+1\right)\left(a+2\right)}{6}\) là số nguyên hay \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên
\(\text{Ta có:}\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(\Leftrightarrow\frac{2a+3a^2+a^3}{6}\)
\(\text{Xét tử số:}\)
\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)
\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]\)
\(=a\left(a+1\right)+\left(a+2\right)\)
\(\text{Vì a,a+1 là 2 số nguyên liên tiếp nên:}\)
\(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)\left(a+2\right)⋮2\)
\(\Leftrightarrow a^3+3a^2+2a⋮2\left(1\right)\)
\(\text{Mặt khác }a,a+1,a+2\text{ là 3 số nguyên liên tiếp nên chúng}⋮3\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮3\)
\(\Leftrightarrow a^3+3a^2+2a⋮3\left(2\right)\)
\(\text{Từ (1) và (2) kết hợp (2;3) nguyên tố cùng nhau:}\)
\(\Rightarrow a^3+3a^2+2a⋮6\)
\(\Rightarrow\frac{a^3+3a^2+2a}{6}\inℤ\)
\(\Rightarrow\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\text{ là 1 số nguyên}\)
Đặt A= \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
=> A= \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}\)
\(=\frac{2a+3a^2+a^3}{6}\)
\(=\frac{a\left(a+1\right)\left(a+2\right)}{6}\)
Để A nhận giá trị nguyên => a(a+1)(a+2) phải chia hết cho 6.
mà a(a+1)(a+2) là 3 số nguyên liên tiếp nên a(a+1)(a+2) chia hết cho 6.
Vậy với a là một số nguyên thì \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) luôn luôn nhận giá trị nguyên (Đpcm)
Mình giải đầu tiên đó!!
a) Biến Đổi vế phải ta có :
a^2 + 3a + 2 = a^2 + 2a + a + 2
= a ( a+ 2 ) +a + 2
= ( a+ 1 )(a+ 2 )
Vậy VT = VP đẳng thức được chứng minh