Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ trang 1 dến 9 có 9 chữ số
từ trang 10 đến 99 có số chữ số là
( 99 - 10 ) : 1 + 1 = 90 số
để viết 90 số có 2 chữ số cần số chữ số là
90 . 2= 180 chữ số
từ 100 đến 999 có số số là
( 999 - 100 ) : 1 + 1 = 900 số
để viết 900 số có 3 chữ số cần số chữ số là
900 . 3 = 2700 chữ số
từ 1000 đến 1032 có số số là
( 1032 - 1000 ) : 1 + 1 = 33 số
để viết 33 số có 4 chữ số ta cần số chữ số là
33 . 4 = 132 chữ số
cần tất cả số chữ số để viết từ 1 đến 1032 là
9 + 180 + 2700 + 132 = 3021 chữ số
a.(x+1)(x+2)(x+3)(x+4)-24=[(x+1)(x+4)][(x+2)(x+3)]-24=(\(x^2+5x+4\))(\(x^2+5x+6\))-24 (1)
đặt \(x^2+5x+5=a\)ta có (1)=(a-1)(a+1)-24=\(a^2-25=\left(a-5\right)\left(a+5\right)\)
thay a=\(x^2+5x+5\)vào (1) ta có (1)=(\(x^2+5x\)+5-5)(\(x^2+5x\)+5+5)=x(x+5)(\(x^2\)+5x+10)
b.ta có :\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}=\frac{a\left(a^2+3a+2\right)}{6}\)=\(\frac{a\left(a^2+2a+a+2\right)}{6}=\frac{a\left(a+1\right)\left(a+2\right)}{6}\).ta lại có a(a+1)(a+2) là tích 3 số nguyên liên tiếp luôn chia hết cho 6 suy ta điều cần cm
\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=0\)
\(\Leftrightarrow x+y+z=0\)
Ta có
\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)
\(\Rightarrow x^3+y^3+z^3=3xyz\)
=> ĐPCM
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
Ta có \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)
Lại có 2a + 3a2 + a3
=a(2+3a+a2)
= a(a2 + 3a +2)
=a(a2 +a +2a +2)
= a[a(a+1) + 2(a+1)]
=a [(a+1) (a+2)]
= a(a+1)(a+2)
ta thấy a(a+1)(a+2) là tích 3 số nguyên liên tiếp
=> a(a+1)(a+2) \(⋮3\) và \(⋮\)2
mà (2;3)=1
=> a(a+1)(a+2) \(⋮\)6
=> \(\frac{a\left(a+1\right)\left(a+2\right)}{6}\) là số nguyên hay \(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\) là số nguyên
\(\text{Ta có:}\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\)
\(\Leftrightarrow\frac{2a+3a^2+a^3}{6}\)
\(\text{Xét tử số:}\)
\(a^3+3a^2+2a=a\left(a^2+3a+2\right)\)
\(=a\left[a\left(a+2\right)+\left(a+2\right)\right]\)
\(=a\left(a+1\right)+\left(a+2\right)\)
\(\text{Vì a,a+1 là 2 số nguyên liên tiếp nên:}\)
\(a\left(a+1\right)⋮2\Rightarrow a\left(a+1\right)\left(a+2\right)⋮2\)
\(\Leftrightarrow a^3+3a^2+2a⋮2\left(1\right)\)
\(\text{Mặt khác }a,a+1,a+2\text{ là 3 số nguyên liên tiếp nên chúng}⋮3\)
\(\Leftrightarrow a\left(a+1\right)\left(a+2\right)⋮3\)
\(\Leftrightarrow a^3+3a^2+2a⋮3\left(2\right)\)
\(\text{Từ (1) và (2) kết hợp (2;3) nguyên tố cùng nhau:}\)
\(\Rightarrow a^3+3a^2+2a⋮6\)
\(\Rightarrow\frac{a^3+3a^2+2a}{6}\inℤ\)
\(\Rightarrow\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}\text{ là 1 số nguyên}\)