Cho tam giác ABC có góc A bằng 70 độ, AB=6 cm, AC=10 cm. tính diện tích ABC
nhanh nha các bae :3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cạnh AC dài \(10:\dfrac{1}{3}=30\left(cm\right)\)
Diện tích ABC là \(\dfrac{1}{2}\times30\times10=150\left(cm\right)\)
A) Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{B}\) chung ; \(\widehat{BAC}=\widehat{BHA}=90\) độ
\(\Leftrightarrow\Delta HBA\infty\Delta ABC\left(g.g\right)\)
B) Xét \(\Delta ABE\) và \(\Delta ACB\) có :
\(\widehat{A}\) chung
\(\widehat{ABE}=\widehat{BCA}\)( Do BE là phân giác của góc B , mà \(\widehat{B}=2\widehat{C}\))
\(\Leftrightarrow\Delta ABE\infty\Delta ACB\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{AB}{AC}=\frac{AE}{AB}\)\(\Leftrightarrow AB^2=AE\cdot AC\left(dpcm\right)\)
C) ta có tỉ lệ : \(\frac{HB}{AB}=\frac{AB}{BC}\)\(\Leftrightarrow HB=\frac{AB^2}{BC}=\frac{9}{6}=1,5\left(cm\right)\)
Xét \(\Delta BHD\) và \(\Delta BAE\) có :
\(\widehat{BHD}=\widehat{BAE}=90\)độ
\(\widehat{ABE}=\widehat{EDH}\)( do BE là phân giác của góc B )
\(\Leftrightarrow\Delta BHD\infty\Delta BAE\left(g.g\right)\)
Ta có tỉ lệ : \(\frac{BH}{AB}=\frac{HD}{AE}=\frac{BD}{BE}\)
\(\Rightarrow\frac{S_{BHD}}{S_{BAE}}=\left(\frac{BH}{AB}\right)^2=\left(\frac{1,5}{3}\right)^2=\frac{1}{4}\)
BÀI NÀY MK TỪNG LÀM RÙI NÊN YÊN TÂM !!! NẾU THẤY ĐÚNG THÌ TK NKA !!!
Hàng thứ 5 từ dười đếm lên bạn sửa lại giúp mk là \(\widehat{ABE}=\widehat{EBH}\)mới đúng !!! thông cảm mk bị cận
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
a: Xét ΔABC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{12}=\dfrac{CD}{14}\)
=>\(\dfrac{AD}{6}=\dfrac{CD}{7}\)
mà AD+CD=AC=9cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{7}=\dfrac{AD+CD}{6+7}=\dfrac{9}{13}\)
=>\(AD=\dfrac{9}{13}\cdot6=\dfrac{54}{13}\left(cm\right);CD=\dfrac{9}{13}\cdot7=\dfrac{63}{13}\left(cm\right)\)
b: Sửa đề: b) Tính tỉ số diện tích của tam giác ABD và tam giác BDC
Vì \(\dfrac{AD}{6}=\dfrac{CD}{7}\)
nên \(\dfrac{AD}{CD}=\dfrac{6}{7}\)
=>\(\dfrac{S_{ABD}}{S_{CBD}}=\dfrac{6}{7}\)
=>\(S_{ABD}=\dfrac{6}{7}\cdot S_{CBD}\)
\(\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=6\)
=>1/2*3*sin135*AB=6
=>\(AB=4\sqrt{2}\left(cm\right)\)
Kẻ đường cao BH
Ta có: \(sinBAC=\dfrac{BH}{AB}\Rightarrow BH=sin70.6\approx5,63\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}.BH.AC=\dfrac{1}{2}.5,63.10=28,15\left(cm^2\right)\)