so sánh A = 2^ 2017 và B= 4+2^2+2^3+2^4+...+2^2016
mọi người giúp em với ạ , thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A= \(1+2+2^2+2^3+...+2^{2010}\)
=> 2A= 2(\(1+2+2^2+2^3+...+2^{2010}\))
=> 2A= 2 +\(2^2+2^3+2^4+...+2^{2011}\)
=> 2A-A= A =(2+ \(2^2+2^3+2^4+...+2^{2011}\)) -( \(1+2+2^2+2^3+...+2^{2010}\))
=> A= \(2^{2011}-1\)
Mà B = \(2^{2011}\)
=> A < B
A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2010 hay A = 3 + 2^2 + 2^3 + 2^4 + ... + 2^2010 bạn
Đặt : A = 1 + 2 + 2^2 + 2^3 + ... + 2^2016
=> 2A = 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017
=> 2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2017 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2016 )
=> A = 2^2017 - 1
=> A < 2^2017
Vậy A < 2^2017
Ta đặt A = 1 + 2 + 22 + 23 + ....+ 22016
=> 2A = 2 + 22 + 23 + ...+22017
=> 2A - A = (2+22+23+...+22017) - (1+2+22+...+22016 )
=> A = 22017 - 1
Mà 22017 - 1 < 22017
=> A < 22017
Vậy 1 + 2 + 22 + ...+ 22016 < 22017
i don't now
mong thông cảm !
...........................
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
ta có :
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
...
\(\frac{1}{100^2}< \frac{1}{99\cdot100}\)
nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}\)
\(\Rightarrow A< \frac{99}{100}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
nhiều qá lm sao nổi
a -35/50 = -7/10
b 510/2805 = 2/11
c 119/126
B2
-2/3= -8/12 , -1/4= -3/12
-8/12<-3/12 nên -2/3<-1/4
b 2/3 5/6
12/18 và 15/18
12/18<15/18
nên 14/21<60/72
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
\(M=\dfrac{3}{1+2}+\dfrac{3}{1+2+3}+...+\dfrac{3}{1+2+...+2022}\)
\(=\dfrac{3}{\dfrac{2\left(2+1\right)}{2}}+\dfrac{3}{\dfrac{3\left(3+1\right)}{2}}+...+\dfrac{3}{\dfrac{2022\left(2022+1\right)}{2}}\)
\(=\dfrac{6}{2\left(2+1\right)}+\dfrac{6}{3\left(3+1\right)}+...+\dfrac{6}{2022\cdot2023}\)
\(=\dfrac{6}{2\cdot3}+\dfrac{6}{3\cdot4}+...+\dfrac{6}{2022\cdot2023}\)
\(=6\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2022\cdot2023}\right)\)
\(=6\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)
\(=6\cdot\left(\dfrac{1}{2}-\dfrac{1}{2023}\right)=6\cdot\dfrac{2021}{4046}=\dfrac{12126}{4046}< 3\)
mà \(3< \dfrac{10}{3}\)
nên \(M< \dfrac{10}{3}\)
Ta có :
\(B=4+2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(B-4=2^2+2^3+2^4+...+2^{2016}\)
\(\Rightarrow\) \(2\left(B-4\right)=2^3+2^4+2^5+...+2^{2017}\)
\(\Rightarrow\) \(2\left(B-4\right)-\left(B-4\right)=B-4=2^{2017}-2^2\)
\(\Rightarrow\) \(B=2^{2017}-2^2+4=2^{2017}\)
\(\Rightarrow\) \(A=B=2^{2017}\)
Vậy \(A=B\)