1. Có tồn tại a,b,c không để thỏa mãm điều kiện sau:
abc+a= -625
abc+b= -632
abc+c= -597
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mình làm rồi :
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Giả sử có tồn tại các số nguyên a,b,c thỏa mãn điều kiện của đề bài .Khi đó ta có :
a(bc+1)=-625
b(ac+1)=-633
c(ab+1)=-597
Nói riêng a,b,c là các số lẻ.Vậy tích abc cũng phải là một số lẻ và do đó -625=abc+a là một số chẵn (vô lí).Vậy không tồn tại các số nguyên a,b,c thỏa mãn đề bài.
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ \(\Rightarrow\) a; b; c đều là số lẻ \(\Rightarrow\) a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Câu hỏi của Nguyễn Thành Long - Toán lớp 6 - Học toán với OnlineMath nhấn vào dòng chữ xanh
Ta đã biết: Các số nguyên dương cộng nhau sẽ ra số nguyên dương
Ta có:
1: abc + a = (-625) (abc và a đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
2: abc + b = (-633) (abc và b đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
3: abc + c = (-597) (abc và c đều là số nguyên dương) => Không có trường hợp nào thỏa mãn điều kiện trên
Bài này mình làm rồi :
Giả sử tồn tại các số nguyên a; b; c thỏa mãn:
a.b.c + a = -625 ; a.b.c + b = -633 và a.b.c + c = -597
Xét từng điều kiện ta có:
a.b.c + a = a.(b.c + 1) = -625
a.b.c + b = b.(a.c + 1) = -633
a.b.c + c = c.(a.b + 1) = -597
Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.
Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)
Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.
Ta có: abc = 999-a = 99-b = 9-c
Từ đó, suy ra:
999-a = 99-b = 9-c
Liệu điều này có thỏa mãn không, thưa là không vì 9-c>0 thì c<9
Vậy 99-b>0 thì b<99 và c<999
ta có abc=999-a=99-b=9-c
=>999-a=99-b=9-c
điều này có thõa này có thõa mãn không,khôngvì 9-c>0 thì c<9
vậy 99-b>0 thì b<99 và c<999
Không tồn tại số tự nhiên a,b,c thỏa mãn điều kiện đề bài.