Tìm x nguyên để 2x+1 là một số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+1 là số lẻ nên để 2x+1 là số chính phương thì số đó có dạng (2k+1)2 (với k\(\in Z\))
2x+1= (2k+1)2 (k\(\in Z\)) <=> x = 2k(k+1) (k\(\in Z\))
Giải:
Dùng biến đổi tương đương chứng minh được:
\(\left(x^2+x+2\right)^2=x^4+5x^3+4x+4>x^4+2x^3+2x^2+x+3>\) \(x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(\Rightarrow x^4+2x^3+2x^2+x+3=\left(x^2+x+1\right)^2\)
\(\Leftrightarrow x^4+2x^3+2x^2+x+3=x^4+2x^3+3x^2+2x+1\)
\(\Leftrightarrow x^2+x-2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy \(x=1\) hoặc \(x=-2\) thì phương trình trên là số chính phương
dùng phương pháp hệ số bất định ý bạn gọi đa thức đó là bình phương của đa thức (x^2+ax+b)^2 rồi khai triển là ok
Để x^2 - 2x - 14 là số chính pương
<=> x^2 - 2x - 14 = y^2
<=> x^2 - 2x + 1 - 15 = y^2
<=> (x - 1)^2 - 15 = y^2
<=> (x - 1)^2 - y^2 = 15
<=> (x - y - 1)(x + y - 1) = 3*5 = 1*15 = -5*(-3) = -15*(-1)
Vì x - y - 1 < x + y - 1
=> TH1: x - y - 1 = 3 ; x + y - 1 = 5
<=> x - y = 4 ; x + y = 6
<=> x = 5
TH2: x - y - 1 = 1 ; x + y - 1 = 15
<=> x - y = 2 ; x + y = 16
<=> x = 9
TH3: x - y - 1 = -5 ; x + y - 1 = -3
<=> x - y = -4 ; x + y = -2
<=> x = -3
TH4: x - y - 1 = -15 ; x + y - 1 = -1
<=> x - y = -14 ; x + y = 0
<=> x = -7
Vậy x = 5; x = 9; x = -3; x = -7
NHỚ LIKE CHO MÌNH NHÉ! MÌNH CẢM ƠN!
Dùng biến đổi tương đương chứng minh được :
( x2 + x+2)2 = x4 + 2x3 + 5x2 +4x+4 > x4 +2x3 +2x2 +x+3 > x4 + 2x3 +x2 = ( x2 +x)2
=) x4 +2x3 +2x2 +x+3 = ( x2 +x+1)2 (=) x4 +2x3 +2x2 +x+3 = x4 +2x3 +3x2 +2x+1
(=) x2 +x-2=0 (=) x=1 hoặc x=-2
Vì 2x+1 là số lẻ nên để 2x+1 là số chính phương thì
\(2x+1=\left(2k+1\right)^2\left(k\in N\right)\)
hay \(x=2k\left(k+1\right)\)