4/7.9 + 4/7.11 + ... + 4/159.161
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)
b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(=\frac{15}{16}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!1111
Viết vậy đúng đó em
A = 5/(3.7) + 5/(7.11) + 5/(11.15) + ... + 5/(2019.2023)
= 5/4 . [4/(3.7) + 4/(7.11) + 4/(11.15) + ... + 4/(2019.2023)]
= 5/4 . (1/3 - 1/7 + 1/7 - 1/11 + 1/11 - 1/15 + ... + 1/2019 - 1/2023)
= 5/4 . (1/3 - 1/2023)
= 5/4 . 2020/6069
= 2525/6069
\(B=\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}\right)+\frac{1}{4}\left(\frac{1}{7}-\frac{1}{11}\right)+....+\frac{1}{4}\left(\frac{1}{107}-\frac{1}{111}\right)\)
\(=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{107}-\frac{1}{111}\right)\)
\(=\frac{1}{4}\left(\frac{1}{4}-\frac{1}{111}\right)\)
\(=\frac{107}{444}\)
vậy biểu thức trên =\(\frac{107}{444}\)
\(\left[36\times4-4\times\left(82-7\times11\right)^2\right]:4-2022^0\\ =\left[144-4\times\left(82-77\right)^2\right]:4-1\\ =\left[144-4\times5^2\right]:4-1\\ =\left[144-4\times25\right]:4-1\\ =\left[144-100\right]:4-1\\ =44:4-1=11-1=10\)
a=4/3.7 +4/7.11+4/11.15 +.....+4/107/111
=1/3-1/7+1/7-1/11+1/11-1/15+......+1/107-1/111
=1/3-1/111
=12/37
Đặt A = \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{103.107}+\frac{4}{107.111}\)
\(=\left(\frac{1}{3}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{15}\right)+...+\left(\frac{1}{103}-\frac{1}{107}\right)+\left(\frac{1}{107}-\frac{1}{111}\right)\)
\(=\frac{1}{3}-\frac{1}{111}=\frac{37-1}{111}=\frac{36}{111}\)
a) 1/(5.7) + 1/(7.9) + ... + 1/(2011.2013)
= 1/2.(1/5 - 1/7 + 1/7 - 1/9 + ... + 1/2011 - 1/2013)
= 1/2.(1/5 - 1/2013)
= 1/2 . 2008/10065
= 1004/10065
b) 1/(7.11) + 1/(11.15) +1/(15.19) + ... + 1/(2019.2023)
= 1/4.(1/7 - 1/11 + 1/11 - 1/15 + 1/15 - 1/19 + ... + 1/2019 - 1/2023)
= 1/4.(1/7 - 1/2023)
= 1/4 . 288/2023
= 72/2023
\(\dfrac{2^7.9^4}{4^4.3^9}\)
\(=\dfrac{2^7.\left(3^2\right)^4}{\left(2^2\right)^4.3^9}\)
\(=\dfrac{2^7.3^8}{2^8.3^9}\)
\(=\dfrac{1}{2.3}=\dfrac{1}{6}\)
\(#WendyDang\)