K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(y=\frac{\frac{1-\cos4x}{2}+3\sin4x}{\cos4x-\sin4x+3}=\frac{6\sin4x-\cos4x+1}{2\cos4x-2\sin4x+6}\)

\(\Leftrightarrow\left(2y+1\right)\cos4x-\left(2y+6\right)\sin4x=1-6y\)(*)

(*) có nghiệm khi và chỉ khi: \(\left(2y+1\right)^2+\left(2y+6\right)^2\ge\left(1-6y\right)^2\)

\(\Leftrightarrow-7y^2+10y+9\ge0\Leftrightarrow\frac{5-2\sqrt{22}}{7}\le y\le\frac{5+2\sqrt{22}}{7}\)

NV
21 tháng 7 2021

b.

ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)

\(\sqrt{2}\left(sinx+cosx\right)=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)

\(\Leftrightarrow\sqrt{2}\left(sinx+cosx\right)=\dfrac{1}{sinx.cosx}\)

Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(sinx.cosx=\dfrac{t^2-1}{2}\)

Pt trở thành:

\(\sqrt{2}t=\dfrac{2}{t^2-1}\Rightarrow t^3-t-\sqrt{2}=0\)

\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t^2+\sqrt{2}t+1\right)=0\)

\(\Leftrightarrow t=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\)

NV
21 tháng 7 2021

a.

\(\Leftrightarrow sin^22x+cos^22x+\sqrt{3}sin4x+1+cos4x=0\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-2\)

\(\Leftrightarrow\dfrac{1}{2}cos4x+\dfrac{\sqrt{3}}{2}sin4x=-1\)

\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{3}\right)=-1\)

\(\Leftrightarrow4x-\dfrac{\pi}{3}=\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\)

28 tháng 6 2021

1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)

\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)

2.\(sin^22x+cos^23x=1\)

\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)

\(\Leftrightarrow cos6x=cos4x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)

Vậy...

3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)

\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)

\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))

Vậy...

4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)

\(\Leftrightarrow cos2x+cos4x=1+cos6x\)

\(\Leftrightarrow2cos3x.cosx=2cos^23x\)

\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)

Vậy...

19 tháng 12 2018

\(\Leftrightarrow\cos^22x-\sin^22x-\sqrt{3}\sin4x-1=0\)

\(\Leftrightarrow\cos^22x-\left(1-\cos^22x\right)-2\sqrt{3}\sin2x\cos2x-1=0\)

\(\Leftrightarrow2\cos^22x-2\sqrt{3}sin2x\cos2x-2=0\)

\(\Leftrightarrow\cos^22x-\sqrt{3}sin2x\cos2x=1\)

\(\Leftrightarrow\cos2x\left(\cos2x-\sqrt{3}sin2x\right)=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\cos2x=1\\\cos2x-\sqrt{3}\sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{k\sqcap}{2}\\\dfrac{1}{2}\cos2x-\dfrac{\sqrt{3}}{2}\sin2x=\dfrac{1}{2}\left(1\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow\sin\dfrac{\sqcap}{6}\cos2x-\cos\dfrac{\sqcap}{6}\sin2x=\dfrac{1}{2}\)

\(\Leftrightarrow\sin\left(\dfrac{\sqcap}{6}-2x\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\sqcap}{6}-2x=\dfrac{\sqcap}{6}+k2\sqcap\\\dfrac{\sqcap}{6}-2x=\dfrac{5\sqcap}{6}+k2\sqcap\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\sqcap\\x=\dfrac{-\sqcap}{3}+k\sqcap\end{matrix}\right.\)

\(\Rightarrow S=\left\{{}\begin{matrix}\left[{}\begin{matrix}x=k\sqcap\\x=\dfrac{-\sqcap}{3}+k\sqcap\end{matrix}\right.\\x=\dfrac{k\sqcap}{2}\end{matrix}\right.\)

27 tháng 7 2019
https://i.imgur.com/6ntnKOa.jpg
27 tháng 7 2019
https://i.imgur.com/NFXTxmn.jpg

y=(sin2x-3)^2-6

-1<=sin2x<=1

=>-4<=sin2x-3<=-2

=>4<=(sin2x-3)^2<=16

=>-2<=y<=10

y min khi sin2x-3=-2

=>sin 2x=1

=>2x=pi/2+k2pi

=>x=pi/4+kpi

y max khi sin 2x-3=-4

=>sin 2x=-1

=>2x=-pi/2+k2pi

=>x=-pi/4+kpi

NV
19 tháng 7 2020

\(y=4-\frac{5}{4}\left(2sin2x.cos2x\right)^2\)

\(y=4-\frac{5}{4}sin^24x\)

Do \(0\le sin^24x\le1\)

\(\Rightarrow\frac{11}{4}\le y\le4\)

\(y_{min}=\frac{11}{4}\) khi \(sin^24x=1\)

\(y_{max}=4\) khi \(sin^24x=0\)

20 tháng 7 2020

cảm ơn ạ

NV
15 tháng 6 2020

\(\frac{sin3x+sinx+sin4x}{cos4x+1+cosx+cos3x}=\frac{2sin2x.cosx+2sin2x.cos2x}{2cos^22x+2cos2x.cosx}=\frac{2sin2x\left(cosx+cos2x\right)}{2cos2x\left(cos2x+cosx\right)}=\frac{sin2x}{cos2x}=tan2x\)

\(\frac{sin^22x+2cos\left(2\pi+\pi+2x\right)-2}{-3+4cos2x+cos\left(\pi-4x\right)}=\frac{sin^22x-2cos2x-2}{-3+4cos2x-cos4x}=\frac{4sin^2x.cos^2x-2\left(2cos^2x-1\right)-2}{-3+4\left(1-2sin^2x\right)-\left(1-2sin^22x\right)}\)

\(=\frac{4cos^2x\left(sin^2x-1\right)}{-8sin^2x+2sin^22x}=\frac{2cos^2x.\left(-cos^2x\right)}{-4sin^2x+4sin^2x.cos^2x}=\frac{cos^4x}{2sin^2x\left(1-cos^2x\right)}\)

\(=\frac{cos^4x}{2sin^4x}=\frac{1}{2}cot^4x\)

15 tháng 6 2020

Mình cảm ơn nhé :))

11 tháng 9 2021

\(y=\sin^4x+\cos^4x\\ =1-2\sin^2x\cdot\cos^2x\\ =1-\dfrac{1}{2}\sin^22x\\ 0\le\sin^22x\le1\\ \Leftrightarrow\dfrac{1}{2}\le y\le1\\ y_{min}=\dfrac{1}{2}\Leftrightarrow\sin^22x=1\Leftrightarrow x=\dfrac{k\pi}{2}\pm\dfrac{\pi}{4}\\ y_{max}=1\Leftrightarrow\sin^22x=0\Leftrightarrow x=k\pi\)

11 tháng 9 2021

\(y=3\sin x+4\cos x\\ =5\left(\dfrac{3\sin x}{5}+\dfrac{4\cos x}{5}\right)\\ =5\cos\left(x-a\right),\forall\cos a=\dfrac{4}{5},\sin a=\dfrac{3}{5}\\ -1\le\cos\left(x-a\right)\le1\\ \Leftrightarrow-5\le y\le5\\ y_{min}=-5\Leftrightarrow\cos\left(x-a\right)=-1\\ y_{max}=5\Leftrightarrow\cos\left(x-a\right)=1\)