K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2021

\(\text{Ta có:}\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)

\(\Rightarrow\frac{ad}{bc}< \frac{cd}{dc}\)

\(\Rightarrow\frac{ad}{bc}< 1\)

\(\Rightarrow ad< 1.bc\)

\(\Rightarrow ad< bc\)

\(\cdot\text{Từ }ad< bc\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

\(\cdot\text{Từ }ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{a}{c}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)

1 tháng 10 2018

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}\left(1\right)\)

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{d}{c}< \frac{b+d}{a+c}\)

\(\Rightarrow\frac{c}{d}>\frac{a+c}{b+d}\left(2\right)\)

Từ (1) và (2) ,suy ra đpcm

3 tháng 4 2019

Để \(\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}\ge\frac{a-d}{a+b}\)

\(\Leftrightarrow\frac{a-b}{b+c}+\frac{b-c}{c+d}+\frac{c-d}{d+a}+\frac{d-a}{a+b}\ge0\)

\(\Leftrightarrow\frac{a-b}{b+c}+1+\frac{b-c}{c+d}+1+\frac{c-d}{d+a}+1+\frac{d-a}{a+b}+1\ge4\)

\(\Leftrightarrow\frac{a+c}{b+c}+\frac{b+d}{c+d}+\frac{c+a}{d+a}+\frac{d+b}{a+b}\ge4\)

\(\Leftrightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge4\)(Cần phải chứng minh)

Ta có : \(\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+c\right).\frac{4}{a+b+c+d}\left(1\right)\)(Áp dụng BĐT Cô-si)

\(\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\ge\left(b+d\right).\frac{4}{a+b+c+d}\left(2\right)\)(Áp dụng BĐT Cô-si)

Từ (1) và (2) \(\Rightarrow\left(a+c\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)+\left(b+d\right)\left(\frac{1}{c+d}+\frac{1}{a+b}\right)\)

\(\ge\frac{4\left(a+c\right)}{a+b+c+d}+\frac{4\left(b+d\right)}{a+b+c+d}=4\)(Điều phải chứng minh)

7 tháng 4 2019

Thank bạn Fire Sky very much ☺☺🙂☺☺!!

7 tháng 7 2018

Bài 1a đề có chính xác không vậy bạn?

7 tháng 7 2018

Bài 1b, bạn so sánh với -1 nhé

15 tháng 6 2020

@Akai Haruma

16 tháng 6 2015

Vì \(b=\frac{a+c}{2}\)

=>2b=a+c (1)

Do \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{1}{2}.\left(\frac{d}{bd}+\frac{b}{bd}\right)=\frac{1}{2}.\frac{b+d}{bd}=\frac{b+d}{2bd}\)

=>\(\frac{1}{c}=\frac{b+d}{bd}\)

=>2bd=(b+d).c=bc+dc (2)

Từ (1) và (2) ta thấy:

    2bd=(a+c).d=ad+cd=bc+dc

=>ad=bc

Đẳng thức này chứng tỏ 4 số a,b,c,d lập nên 1 tỉ lệ thức.

=>ĐPCM

24 tháng 1 2018

âygiống mình đấy hihi hôm nay vừa lên bang 0 nha