Tìm chữ số tự nhiên n để 3n + 39 chia hết cho n+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n + 29 chia hết cho n + 3
3n + 9 + 20 chia hết cho n + 3
3.(n + 3) + 20 chia hết cho n + 3
=> 20 chia hết cho n + 3
=> n + 3 thuộc Ư(20) = {1 ; 2 ; 4 ; 5 ; 10 ; 20}
Ta có bảng sau :
n + 3 | 1 | 2 | 4 | 5 | 6 | 20 |
n | -2 | -1 | 1 | 2 | 3 | 17 |
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
trả lời...................................
đúng nhé..............................
hk tốt.........................................
1)Ta có : 3n+4 = 3 ( n - 1 ) + 3 + 4
= 3 ( n - 1 ) + 7
Vì ( n - 1 ) chia hết cho ( n -1 ) =>3 ( n - 1 ) chia hết cho ( n -1 )
Để [ 3 ( n - 1 ) + 7 ] chia hết cho ( n - 1 ) thì 7 chia hết cho n - 1
Suy ra : n -1 thuộc Ư( 7 ) = { 1 ; 7 }
Nếu : n - 1 = 7 thì n = 7 + 1 = 8 ( thỏa mãn ĐK )
Nếu : n - 1 = 1 thì n = 1 + 1 = 2 ( thỏa mãn ĐK )
Vậy n = 8 hoặc n = 2 là giá trị cần tìm
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
\(\dfrac{3n+29}{n+3}=\dfrac{3\left(n+3\right)+20}{n+3}=3+\dfrac{20}{n+3}\)
Để \(3n+29⋮n+3\Rightarrow20⋮n+3\)
Hay n+3 là ước của 20 do n là số tự nhiên \(\Rightarrow\left(n+3\right)\ge3\)
\(\Rightarrow\left(n+3\right)=\left\{4;5;10;20\right\}\Rightarrow n=\left\{1;2;7;17\right\}\)
\(3n+29⋮n+3\)
\(\Rightarrow3n+29-3\left(n+3\right)⋮n+3\)
\(\Rightarrow3n+29-3n-9⋮n+3\)
\(\Rightarrow20⋮n+3\)
\(\Rightarrow n+3\in\left\{-1;1;-2;2;-4;4;-5;5;-20;20\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-5;-1;-7;1;-8;2;-23;17\right\}\left(n\in Z\right)\)
3n + 8 chia hết cho n + 2
3n + 6 + 2 chia hết cho n + 2
Mà 3n + 6 chia hết cho n + 2
Nên 2 chia hết cho n + 2
n + 2 thuộc Ư(2) = {-2 ; - 1; 1 ; 2}
Mà n là số tự nhiên nên n = 0
3n + 4 chia hết cho n
Mà 3 n chia hết cho n
Nên 4 chia hết cho n
=> n thuộc Ư(4) = {1;2;4}
n khác 1 => n thuộc {2;4}
Câu 1: Làm lại nha:))
Ta có: 3n + 8 chia hết cho n + 2
Mà: n + 2 chia hết cho n + 2
=> 3( n + 2 ) chia hết cho n + 2
=> 3n + 6 chia hết cho n + 2
Từ đó => ( 3n + 8 ) - ( 3n + 6 ) chia hết cho n + 2
=> 2 chia hết cho n + 2
=> n + 2 \(\in\) Ư( 2 )
=> n + 2 = 2
=> n = 0
Vì 4n+3 chia hết cho 2n-1
=> (4n+3) - 2(2n-1) chia hết cho 2n-1
=> 4n + 3 - 4n +2 chia hết cho 2n-1
=> 5 chia hết 2n-1
=> 2n-1 thuộc {-1;1;5}
=> 2n thuộc {0;2;6}
=> n thuộc {0;1;3}
ta có: 3n + 29 chia hết cho n + 3
=> 3n + 9 + 20 chia hết cho n + 3
3.(n+3) + 20 chia hết cho n + 3
mà 3.(n+3) chia hết cho n + 3
=> 20 chia hết cho n + 3
=>...
De n la so tu nhien thi: 3n+39 chia het cho n+3 Suy ra n+3 chia het cho n+3
=) 3n+39 chia het cho n+3 va 3(n+3) chia het cho n+3
=) 3n+39 chia het cho n+3 va 3n+9 chia het cho n+3
=) (3n+39)-(3n+9) chia het cho n+3
=) 3n+39-3n-9 chia het cho n+3
=) 30 chia het cho n+3
=) n+3 thuoc U(30)={1, 2, 3, 5, 6, 10,15, 30}
Phan con lai ban tu lam nha