K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2015

2^6=64

8^2=64. Vậy 2^6=8^2

5^3=125, 3^5=243. Vì 243>125 nên 5^3<3^5

 

26 và 82

82=(23)2=26

=> 26=82

 

 

4 tháng 10 2021

a) 2711 và 818

\(27^{11}=\left(3^3\right)^{11}=3^{3.11}=3^{33}\)

\(81^8=\left(3^4\right)^8=3^{4.8}=3^{32}\)

Vì 333 > 332 ⇒ 2711 >818

b) 523 và 6 . 522

\(5^{23}=5^{22}.5\)

Vì 522 . 5 < 6 . 522 ⇒ 523 < 6 . 522

11 tháng 10 2021

Chứng tỏ (a + 2021) - (a + 222) là bội của 2 a thuộc N

9 tháng 9 2023

mình đang cần gâps

 

9 tháng 9 2023

6255 và 1257

a, 6255 = (54)5 = 520

1257 = (53)7 = 521

Vì 520 < 521 nên 6255 < 1257

b,  32n = (32)n = 9n

     23n = (23)n = 8n

     9n > 8n ( nếu n > 0)

      9n = 8n (nếu n = 0)

Vậy nếu n = 0 thì 23n = 32n
      nếu n > 0 thì 32n > 23n

Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên 
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132

Bài 2 : So sánh các số sau 
 A . 320 và 274

Ta có : 274 = (32)= 3

Vì 20 < 8 => 320 > 274

( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~

# Dương 

20 tháng 8 2019

Trả lời

4100=2200

2202

Vậy 2200 < 2202 hay 4100 < 2202

30 và 58

30 < 58

20 tháng 8 2019

a, \(4^{100}=\left(2^2\right)^{100}=2^{200}< 2^{202}\)

\(\Rightarrow\text{ }4^{100}< 2^{202}\)

b, \(3^0=1< 5^8\)

\(3^0< 5^8\)

c, \(\left(0,6\right)^0=1\)

\(\left(-0,9\right)^6=\left(0,9\right)^6\)

\(\Rightarrow\text{ }\left(0,6\right)^0< \left(-0,9\right)^6\)

d, 

e, \(8^{12}=\left(2^3\right)^{12}=2^{36}=2^{16}\cdot2^{20}=2^{16}\cdot\left(2^4\right)^5=2^{16}\cdot16^5\)

\(12^8=\left(2^2\cdot3\right)^8=2^{16}\cdot3^8=2^{16}\cdot\left(3^2\right)^4=2^{16}\cdot9^4\)

Vì \(2^{16}\cdot16^5>2^{16}\cdot9^4\text{ }\Rightarrow\text{ }8^{12}>12^8\)

14 tháng 3 2022
Mình chịu thua thôi
16 tháng 9 2021

Ta có:

\(2^6=\left(2^3\right)^2=8^2\)\(=64\)

\(6^2=36\)

Vì \(8^2>6^2\)

\(2^6>6^2\)

16 tháng 9 2021

\(a,2^6=64\)

\(6^2=36\)

Vì \(64>36\) ⇒ \(2^6>6^2\)

\(b,3^4=81\)

\(4^3=64\)

Vì \(81>64\) ⇒ \(3^4>4^3\)

\(c,5^4=625\)

\(4^5=1024\)

Vì \(625< 1024\) ⇒ \(5^4< 4^5\)