1/3+1/6+1/10+...+2/x(x+1)=2011/2013. Tìm x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2x3/2+1/3x4/2+1/4x5/2+1/5x6/2+.......+2/Xx(X+1)=2011/2013
2/2x3+2/3x4+2/4x5+2/5x6+.....+2/Xx(X+1)=2011/2013
2x(1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(x+1)=2011/2013
1/2x3+1/3x4+1/4x5+1/5x6+....+1/Xx(X+1)=2011/4026
1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+.....+ 1/x-1/x+1=2011/4026
1/2-1/x+1=2011/4026
1/x+1=1/2-2011/4026
1/x+1=1/2013
Suy ra x=2012
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
=> \(2.\frac{1}{2}-2.\frac{1}{x+1}=\frac{2011}{2013}\)
=> \(1-\frac{2}{x+1}=\frac{2011}{2013}\)
=> \(\frac{2}{x+1}=1-\frac{2011}{2013}=\frac{2}{2013}\)
=> x + 1 = 2013
=> x = 2013 - 1 = 2012
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{4026}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4016}\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\Rightarrow x+1=2013\Rightarrow x=2012\)
Cái này lớp 6 :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)
\(\Leftrightarrow x+1=2013\)
=> x = 2012
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2013-1\)
\(\Rightarrow x=2012\)
Vậy \(x=2012\)
~ Ủng hộ nhé
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+........+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+........+\frac{2}{x.\left(x+1\right)}=\frac{2011}{2013}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{x.\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\Rightarrow x=2012\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x+1 = 2013 => x = 2012
kết quả là 99999999999