Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này lớp 6 :
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+......+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
<=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{4026}=\frac{1}{2013}\)
\(\Leftrightarrow x+1=2013\)
=> x = 2012
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=1-\frac{2011}{2013}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2013-1\)
\(\Rightarrow x=2012\)
Vậy \(x=2012\)
~ Ủng hộ nhé
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times\left(x+1\right):2}=\frac{2011}{2013}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\times\left(x+1\right)}\times\frac{1}{2}=\frac{2011}{2013}\)
\(\Rightarrow2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4016}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Rightarrow x+1=2013\)
\(\Rightarrow x=2012\)
Vậy x = 2012
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3
1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4
...
2/x(x + 1) = 2/x - 2/(x +1)
Do đó:
1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1)
suy ra 1 - 2/(x + 1) = 2013/2014
x= 4027
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3 1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4 ... 2/x(x + 1) = 2/x - 2/(x +1) Do đó: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1) suy ra 1 - 2/(x + 1) = 2013/2014 x= 4027
Ta có : 1 x 2 x 3 x ..... x 2012 x 2013 - 1 x 3 x 5 x ..... x 2011 x 2013
= (1 x 3 x 5 x ..... x 2013) x (2 x 4 x 6 x ..... x 2012) - 1 x 3 x 5 x ..... x 2011 x 2013
= (1 x 3 x 5 x ..... x 2011 x 2013) x (2 x 4 x 6 x ..... x 2012 - 1)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x+1 = 2013 => x = 2012
kết quả là 99999999999