Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3
1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4
...
2/x(x + 1) = 2/x - 2/(x +1)
Do đó:
1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1)
suy ra 1 - 2/(x + 1) = 2013/2014
x= 4027
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
=> \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}+...+\frac{2}{x\times\left(x+1\right)}=\frac{2011}{2013}\)
=> \(2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{x\times\left(x+1\right)}\right)=\frac{2011}{2013}\)
=> \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2011}{2013}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}=\frac{1}{2013}\)
=> x+1 = 2013 => x = 2012
\(A=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x......x\left(1-\frac{1}{2013}\right)x\left(1-\frac{1}{2014}\right)\)
\(A=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x...............x\frac{2012}{2013}x\frac{2013}{2014}\)
\(A=\frac{1}{2014}\)
\(\left[1-\frac{1}{2}\right]\left[1-\frac{1}{3}\right]...\left[1-\frac{1}{2014}\right]\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}...\cdot\frac{2013}{2014}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2013}{2\cdot3\cdot4\cdot5\cdot...\cdot2014}=\frac{1}{2014}\)
1/3 = 2/6 = 2/(2x3) = 2/2 - 2/3 1/6 = 2/12 = 2/(3x4) = 2/3 - 2/4 ... 2/x(x + 1) = 2/x - 2/(x +1) Do đó: 1/3 + 1/6 + ... + 2/x(x+1) = 2/2 - 2/3 + 2/3 - 2/4 + ... +2/x - 2/(x + 1) = 2/2 - 2/(x+1) suy ra 1 - 2/(x + 1) = 2013/2014 x= 4027