K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(\left(2x-1\right)^2=\left|1-2x\right|=\left|2x-1\right|\left(1\right)\)

Trường hợp thứ nhất:

 \(x\ge\frac{1}{2}\Rightarrow\left|2x-1\right|=2x-1\)

\(\left(1\right)\Leftrightarrow\left(2x-1\right)^2=2x-1\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Rightarrow x\in\left\{1;\frac{1}{2}\right\}\)

Trường hợp thứ hai:

\(x< \frac{1}{2}\Rightarrow\left|2x-1\right|=1-2x\)

\(\left(1\right)\Leftrightarrow\left(2x-1\right)^2=1-2x\Leftrightarrow\left(2x-1\right)x=0\Rightarrow x=0\)

Vậy nghiệm của phương trình là \(S=\left\{0;\frac{1}{2};1\right\}\)

6 tháng 8 2021

\(4\left(x+1\right)\left(-x+2\right)+\left(2x-1\right)\left(2x+3\right)=-11\)

\(\text{⇔}-4x^2+4x+8+4x^2+4x-3=-11\)

\(\text{⇔}8x+5=-11\) 

\(\text{⇔}8x=-16\)

\(\text{⇔}x=-2\)

Vậy: \(x=-2\)

==========

\(\left(2x+4\right)\left(3x+1\right)\left(x-2\right)-\left(-3x^2+1\right)\left(-2x+\dfrac{2}{3}\right)=-\dfrac{26}{3}\)

\(\text{⇔}6x^3+2x^2-24x-8-6x^3-2x^2-2x+\dfrac{2}{3}=-\dfrac{26}{3}\)

\(\text{⇔}-26x-\dfrac{22}{3}=-\dfrac{26}{3}\)

\(\text{⇔}-26x=-\dfrac{4}{3}\)

\(\text{⇔}x=\dfrac{2}{39}\)

15 tháng 10 2021
(x-1)(x-1)(x-1)(x-1)
14 tháng 10 2021

\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)

14 tháng 10 2021

Bài 2:

a) \(=x^2-4-x^2-2x-1=-2x-5\)

b) \(=8x^3-1-8x^3-1=-2\)

Bài 3:

a) \(\Rightarrow x^3+8-x^3+2x=15\)

\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)

b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)

\(\Rightarrow7x=14\Rightarrow x=2\)

12 tháng 10 2018

nany???

12 tháng 10 2018

ai cho copy bài làm của tui

\(\Leftrightarrow\left(2x+1\right)\left(x+1\right)-\left(2x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow2x^2+3x+1-2x^2-x+3=0\)

=>2x=-4

hay x=-2

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)

\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)

\(\Leftrightarrow x=25\)

b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)

c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x=1\)

hay \(x=-\dfrac{1}{9}\)

31 tháng 8 2021

a: ta có: (2x−5)(x+2)−2x(x−1)=15

⇔2x2+4x−5x−10−2x2+2x=15

⇔x=25

b: Ta có: (5−2x)(2x+7)=4x2−25

⇔4x2−25+(2x−5)(2x+7)=0

24 tháng 12 2023

a: \(\left(2x-3\right)^2=\left|3-2x\right|\)

=>\(\left\{{}\begin{matrix}\left|2x-3\right|>=0\\\left(2x-3\right)^2=\left(2x-3\right)\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)=0\)

=>\(\left(2x-3\right)\left(2x-3-1\right)=0\)

=>\(\left(2x-3\right)\left(2x-4\right)=0\)

=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\)

b: \(\left(x-1\right)^2+\left(2x-1\right)^2=0\)

=>\(x^2-2x+1+4x^2-4x+1=0\)

=>\(5x^2-6x+2=0\)

\(\Delta=\left(-6\right)^2-4\cdot5\cdot2=36-20\cdot2=-4< 0\)

=>Phương trình vô nghiệm

c: ĐKXĐ: x>=0

\(x-2\sqrt{x}=0\)

=>\(\sqrt{x}\cdot\sqrt{x}-2\cdot\sqrt{x}=0\)

=>\(\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>\(\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(nhận\right)\end{matrix}\right.\)

d: \(\left(x-1\right)^2+\dfrac{1}{7}=0\)

mà \(\left(x-1\right)^2+\dfrac{1}{7}>=\dfrac{1}{7}>0\forall x\)

nên \(x\in\varnothing\)

a) Ta có: \(6x\left(x-5\right)+3x\left(7-2x\right)=18\)

\(\Leftrightarrow6x^2-30x+21x-6x^2=18\)

\(\Leftrightarrow-9x=18\)

hay x=-2

Vậy: S={-2}

b) Ta có: \(2x\left(3x+1\right)+\left(4-2x\right)\cdot3x=7\)

\(\Leftrightarrow6x^2+2x+12x-6x^2=7\)

\(\Leftrightarrow14x=7\)

hay \(x=\dfrac{1}{2}\)

Vậy: \(S=\left\{\dfrac{1}{2}\right\}\)

c) Ta có: \(0.5x\left(0.4-4x\right)+\left(2x+5\right)\cdot x=-6.5\)

\(\Leftrightarrow0.2x-2x^2+2x^2+5x=-6.5\)

\(\Leftrightarrow5.2x=-6.5\)

hay \(x=-\dfrac{5}{4}\)

Vậy: \(S=\left\{-\dfrac{5}{4}\right\}\)

d) Ta có: \(\left(x+3\right)\left(x+2\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2+5x+6-\left(x^2+3x-10\right)=6\)

\(\Leftrightarrow x^2+5x+6-x^2-3x+10=6\)

\(\Leftrightarrow2x+16=6\)

\(\Leftrightarrow2x=-10\)

hay x=-5

Vậy: S={-5}

e) Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)

\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)

\(\Leftrightarrow14x=0\)

hay x=0

Vậy: S={0}