K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

\(\left(2x-1\right)^2=\left|1-2x\right|=\left|2x-1\right|\left(1\right)\)

Trường hợp thứ nhất:

 \(x\ge\frac{1}{2}\Rightarrow\left|2x-1\right|=2x-1\)

\(\left(1\right)\Leftrightarrow\left(2x-1\right)^2=2x-1\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Rightarrow x\in\left\{1;\frac{1}{2}\right\}\)

Trường hợp thứ hai:

\(x< \frac{1}{2}\Rightarrow\left|2x-1\right|=1-2x\)

\(\left(1\right)\Leftrightarrow\left(2x-1\right)^2=1-2x\Leftrightarrow\left(2x-1\right)x=0\Rightarrow x=0\)

Vậy nghiệm của phương trình là \(S=\left\{0;\frac{1}{2};1\right\}\)

14 tháng 6 2016

lop 8 con lic le 3

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........

a: Sửa đề: \(P=\left(\dfrac{x}{2x-2}+\dfrac{3-x}{2x^2-2}\right):\left(\dfrac{x+1}{x^2+x+1}+\dfrac{x+2}{x^3-1}\right)\)\(P=\left(\dfrac{x}{2\left(x-1\right)}+\dfrac{3-x}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{\left(x+1\right)\left(x-1\right)+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3-x}{2\left(x-1\right)\left(x+1\right)}:\dfrac{x^2-1+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)

\(=\dfrac{x^2+3}{2\left(x+1\right)}\)

b: P=3

=>x^2+3=6(x+1)=6x+6

=>x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

c: P>4

=>P-4>0

=>\(\dfrac{x^2+3-8\left(x+1\right)}{2\left(x+1\right)}>0\)

=>\(\dfrac{x^2-8x-5}{x+1}>0\)

TH1: x^2-8x-5>0 và x+1>0

=>x>-1 và (x<4-căn 21 hoặc x>4+căn 21)

=>-1<x<4-căn 21 hoặc x>4+căn 21

Th2: x^2-8x-5<0 và x+1<0

=>x<-1 và (4-căn 21<x<4+căn 21)

=>Vô lý

31 tháng 7 2023

phép nhân đổi thành phép chia 

17 tháng 10 2019

a) \(\left|2x-3\right|=\left|1-x\right|\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=1-x\\2x-3=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-2\end{cases}}\)

b) \(x^2-4x\le5\)

\(\Leftrightarrow x^2-4x-5\le0\)

\(\Leftrightarrow x^2-5x+x-5\le0\)

\(\Leftrightarrow x\left(x-5\right)+\left(x-5\right)\le0\)

\(\Leftrightarrow\left(x+1\right)\left(x-5\right)\le0\)

Đến đây dễ r

c) \(2x\left(2x-1\right)\le2x-1\)

\(\Leftrightarrow2x\left(2x-1\right)-\left(2x-1\right)\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\le0\)

Mà \(\left(2x-1\right)^2\ge0\)nên 2x - 1=0