rút gọn H=\(\sqrt{x+2\sqrt{2x-4}}\) +\(\sqrt{x-2\sqrt{2x-4}}\)với x>2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(H=\sqrt{x+2\sqrt{2\left(x-2\right)}}+\sqrt{x-2\sqrt{2\left(x-2\right)}}\)
\(H=\sqrt{x-2+2\sqrt{2\left(x-2\right)}+2}+\sqrt{x-2-2\sqrt{2\left(x-2\right)}+2}\)
\(H=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(H=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
* Trường Hợp 1: \(\sqrt{x-2}\ge\sqrt{2}\) => \(H=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
* Trường Hợp 2: \(\sqrt{x-2}< \sqrt{2}\) => \(H=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Nguyễn Hoàng Tiến làm thế là gần đúng hết rồi
trường hợp 2 điều kiện của nó phải là : \(0\le\sqrt{x-2}\le\sqrt{2}\)
ĐKXĐ: \(x\ge2\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{x-2}+\sqrt{2}\right|+\left|\sqrt{x-2}-\sqrt{2}\right|=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Xét \(x\ge4\Rightarrow\sqrt{x-2}\ge\sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
Xét \(0\le x< 4\Rightarrow\sqrt{x-2}< \sqrt{2}\)
\(\Rightarrow A=\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}=2\sqrt{2}\)
Sửa đề: x-4
\(A=\dfrac{x-2\sqrt{x}+x+4\sqrt{x}+4+2x+8}{x-4}=\dfrac{4x+2\sqrt{x}+12}{x-4}\)
a) \(3\sqrt{2x}-4\sqrt{2x}+8-2\sqrt{x}\)
\(=-\left(4\sqrt{2x}-3\sqrt{2x}\right)+8-2\sqrt{x}\)
\(=-\sqrt{2x}-2\sqrt{x}+8\)
b) \(3\sqrt{2x}-\sqrt{72x}+3\sqrt{18x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+3\cdot3\sqrt{2x}+18\)
\(=3\sqrt{2x}-6\sqrt{2x}+9\sqrt{2x}+18\)
\(=\left(3+9-6\right)\sqrt{2x}+18\)
\(=6\sqrt{2x}+18\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
\(\frac{1}{\sqrt{2}}.A=\frac{\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}+\sqrt{\left(x-1\right)-2\sqrt{x-1}+1}}{\sqrt{\left(2x-1\right)+2\sqrt{2x-1}+1}-\sqrt{\left(2x-1\right)-2\sqrt{2x-1}+1}}\)
\(=\frac{\sqrt{\left[\left(\sqrt{x-1}+1\right)\right]^2}+\sqrt{\left[\left(\sqrt{x-1}-1\right)^2\right]}}{\sqrt{\left[\sqrt{2x-1}+1\right]^2}-\sqrt{\left[\left(\sqrt{2x-1}\right)-1\right]^2}}\)
\(=\frac{\left|\sqrt{x-1}+1\right|+\left|\sqrt{x-1}-1\right|}{\left|\sqrt{2x-1}+1\right|-\left|\sqrt{2x-1}-1\right|}\)
DO X>2 NÊN TOÀN BỘ BIỂU THỨC TRONG TRỊ TUYỆT ĐỐI ĐỀU DƯƠNG
\(\frac{1}{\sqrt{2}}.A=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
=>\(A=\frac{\sqrt{x-1}}{\sqrt{2}}\)
Vì hai vế đều dương nên bình phương hai vế, ta được:
\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)
\(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)
\(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)
=2x + 2√ (x-4)^2 = 2x + 2|x-4|
Đến đây bạn tự làm tiếp nha (với x>2)