HELP MEEEEEE !!!
Cho ΔBC cân tại A ( Â<40°) có BM, CN là 2 đường phân giác của ΔABC
A) chứng minh BCMN là hình thang cân
B) BE, CF là 2 đường cao của ΔABC. Chứng minh EMNF là hình thang cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì tam giác ABC cân tại A (gt)
góc ABC=gócACB
=>\(\frac{ABC}{2}\)=\(\frac{ACB}{2}\)
=>\(\widehat{B_1}\)=\(\widehat{B_2}\)=\(\widehat{C_1}\)=\(\widehat{C_2}\)
(vì CN là phân giác \(\widehat{ACB}\):BM là phân giác \(\widehat{ABC}\))
xét tam giác ABM và tam giác ACN có
\(\widehat{B_1}\)=\(\widehat{C_1}\)
 chung
AB=AC(2 cạnh bên)
Do đó tam giác ABM=tam giác ACN(g.c.g)
=>AN=AM
=>tam giác AMN cân tại A
phần a thui mik nghĩ 2 phần còn lại đã
ΔACK vuông tại C có CI vuông góc AK
nên AK*AI=AC^2
ΔCAB vuông tại C có CO là đường cao
nên AO*AB=AC^2=AK*AI
a: góc B=góc C=(180-80)/2=50 độ
b: góc A=180-2*65=50 độ
Ta có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{A}=180^o-\left(\widehat{B}+\widehat{C}\right)\)
Vì trong tam giác cân, hai góc kề một đáy bằng nhau
\(\Rightarrow\widehat{B}=\widehat{C}=70^o\)
\(\Rightarrow\widehat{A}=180^o-\left(70^o+70^o\right)=180^o-140^o=40^o\)
Vậy \(\widehat{A}=40^o\)
Ta có: tam giácABC cân tại A
->góc B =góc C(T/C của tam giác cân)
mà góc B =70o
->Góc C =góc B=70o
Ta có :
góc A +góc B +góc C=180o(đ/l tổng 3 góc của một tam giác)
->góc A=180o-(góc B + góc C)
=180O - (70O X 2)
=40O
=>góc A =40O
Gọi M là trung điểm DC và A' là điểm thuộc tia AM sao cho AM = MA'.
Khi đó ta thấy ngay \(\Delta AMC=\Delta A'MD\left(c-g-c\right)\)
\(\Rightarrow\widehat{MAC}=\widehat{MA'D}\) và AC = A'D.
Ta cũng có ngay \(\Delta ABD=\Delta ACM\left(c-g-c\right)\Rightarrow\widehat{BAD}=\widehat{CAM}\) và AB = AC
Kẻ AH vuông góc BC. Do tam giác ABC cân nên AH đồng thời là trung tuyến.
Vậy thì ta thấy ngay DH < BH nên theo quan hệ giữa đường xiên và hình chiếu ta có AD < AB
Suy ra AD < AC hay AD < DA'
Xét tam giác ADA' có AD < DA' nên theo quan hệ giữa cạnh và góc trong tam giác ta có :
\(\widehat{DAM}>\widehat{DA'M}\Rightarrow\widehat{DAM}>\widehat{MAC}\)
Lại có \(\widehat{DAM}+\widehat{MAC}=\widehat{CAD}\) nên \(\widehat{MAC}< \frac{1}{2}\widehat{CAD}\)
Vậy thì \(\widehat{BAD}< \frac{1}{2}\widehat{CAD}\left(đpcm\right)\)
Tham khảo :P http://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-a-40-co-bm-cn-la-2-duong-phan-giac-chung-minh-bcmn-la-hinh-thang-can