Cho hình thang cân ABCD ( góc D = góc C). Gọi S là giao điểm của hai đường thẳng AD và BC, giao điểm của hai đường cho là O. Và M, N laafn lượt là trung điểm của hai cạnh đấy AB và CD. Chứng minh rằng S, M, O, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha
Xét tứ giác AEDO có góc A và D vuông=> AEDO nội tiếp đường tròn
=>góc AED+góc AOD=180(2 góc đối nhau) (1)
góc B chắn cung AD=> góc AOD=2*góc ABD mà tam giác ABI cân tại I nên góc ABD = góc BAC = 1/2 góc AOD=>góc ABD+BAC=AOD. Vì góc AID kề bù với góc AIB=> gócAID+góc AIB=180=AIB+ABD+BAC=AIB+AOD=>góc AID= góc AOD
từ (1)=> góc AED+góc AID=180(đpcm)
2)
Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)
\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)
Mà AB // ED (gt)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)
\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)
=> CA là tia phân giác của góc C.
Ta có: ∠(ADC) = ∠(BCD) (gt)
⇒ ∠(ODC) = ∠(OCD)
⇒ΔOCD cân tại O (dhnb tam giác cân)
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (hình thang ABCD cân)
⇒ OA = OB
Xét ΔADC và. ΔBCD:
AD = BC (hình thang ABCD cân )
AC = BD (hình thang ABCD cân)
CD chung
Do đó ΔADC và ΔBCD (c.c.c)
⇒ ∠D1= ∠C1
⇒ΔEDC cân tại E (dhnb tam giác cân)
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (hình thang ABCD cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
Mà OA = OB (cmt)
Nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.
Aii giải dùm mjk với mjk đang cần gấp ak