Số A=(n5-n)+2018 có phải là số chính phương không?Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Như chúng ta đã biết: số chính phương là số có căn bậc hai là số tự nhiên
Giả sử căn bậc 2 của \(2018^{2017}\)là \(a^x\)( \(a^x\in N\))
Suy ra ta có: \(\left(a^x\right)^2=2018^{2017}\)
\(\Leftrightarrow a^{2x}=2018^{2017}\)
Xét 2x ta thấy \(2x⋮2\)ma trong khi đó 2017 lại không chia hết cho 2
suy ra \(2018^{2017}\)không phải là số chính phương :)
3.
x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}
ƯC(100;500) =100
suy ra x =100
BC(10;25) =50
suy ra x =50
tick nha
Lời giải:
Các số tự nhiên lẻ đầu tiên: $1,3,5,....$
Số thứ $n$ là: $(n-1)\times 2+1=2n-1$
Tổng của $n$ số tự nhiên lẻ đầu tiên:
$1+3+5+....+(2n-1)=[(2n-1)+1].n:2=2n.n:2=n^2$ là số chính phương.
Tổng các chữ số của n là: \(2012\times4=8048\)
Do 8048 chia 3 dư 2 nên số n chia 3 dư 2 hay n có dạng : 3k + 2 (\(k\in N\)) mà số chính phương không có dạng 3k + 2 nên n không là số chính phương
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
A=n^5-n+2018
=n(n^4-1)+2018
=n(n-1)(n+1)(n^2+1)+2016+2 chia 3 dư 2
=> ko