Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=n^5-n+2018
=n(n^4-1)+2018
=n(n-1)(n+1)(n^2+1)+2016+2 chia 3 dư 2
=> ko
đề sai à?
Nếu theo cách bạn ghi thì đề sẽ là\(2017^{2^{2017^{2018}}}+1\)
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM
A=62017+72018+82019
A=........6+74.72014+82019
A=........6+......1+........6
A=.............3 số chính phương không có tận cùng bằng 3 vậy tổng A không phải số chính phương
a) 7 chia hết cho 7
7^2 chia hết cho 7
7^3 chia hết cho 7
.....
7^1000 chia hết cho 7
\(\Rightarrow\)A chia hết cho 7(1)
7 không chia hết cho 7^2
7^2 chia hết cho 7^2
7^3 chia hết cho 7^2
..
7^1000 chia hết cho 7^2
\(\Rightarrow\)A không chia hết cho 7^2(2)
Từ (1) và (2)\(\Rightarrow\)A không phải là số chính phương
b) Ta thấy: 20^2016 có tận cùng là0
11^2017 có tận cùng là 1
2016^2018 có tận cùng là 6
\(\Rightarrow\)B có tận cùng là 7
\(\Rightarrow\)B không phải là số chính phương
Ta có : \(A=7+7^2+7^3+7^4+...+7^{100}\)
\(A=7+7.7+7^2.7+7^3.7+...+7^{99}.7\)
\(A=7\left(1+7+7^2+7^3+...+7^{99}\right)\)
Vì : \(7⋮7\Rightarrow7\left(1+7+7^2+7^3+...+7^{99}\right)⋮7\)
Tức là \(A\) là số chính phương
Như chúng ta đã biết: số chính phương là số có căn bậc hai là số tự nhiên
Giả sử căn bậc 2 của \(2018^{2017}\)là \(a^x\)( \(a^x\in N\))
Suy ra ta có: \(\left(a^x\right)^2=2018^{2017}\)
\(\Leftrightarrow a^{2x}=2018^{2017}\)
Xét 2x ta thấy \(2x⋮2\)ma trong khi đó 2017 lại không chia hết cho 2
suy ra \(2018^{2017}\)không phải là số chính phương :)