K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

bn chờ chút nhé mình đg bận

22 tháng 3 2016

Thằng thắng nó giải tùm  lum đấy coi chừng bị lừa đểu

29 tháng 7 2023

a) \(x-\sqrt{2x+3}=-2x\)

\(\Leftrightarrow\sqrt{2x+3}=x+2x\)

\(\Leftrightarrow\sqrt{2x+3}=3x\)

\(\Leftrightarrow2x+3=9x^2\)

\(\Leftrightarrow9x^2-2x-3=0\)

\(\Rightarrow\Delta=\left(-2\right)^2-4\cdot9\cdot\left(-3\right)=112>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2+\sqrt{112}}{18}=\dfrac{1+2\sqrt{7}}{9}\\x_2=\dfrac{2-\sqrt{112}}{18}=\dfrac{1-2\sqrt{7}}{9}\end{matrix}\right.\)

b) \(\dfrac{1}{x}=1-\dfrac{1}{x+1}\) (ĐK: \(x\ne0,x\ne-1\))

\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{x+1}=1\)

\(\Leftrightarrow\dfrac{x+1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{x+1+x}{x\left(x+1\right)}=1\)

\(\Leftrightarrow\dfrac{2x+1}{x^2+x}=1\)

\(\Leftrightarrow2x+1=x^2+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow x=2\left(tm\right)\)

29 tháng 7 2023

c) \(\dfrac{2}{\sqrt{x+3}}=\dfrac{1}{\sqrt{x^2-9}}\) (ĐK: \(x\ge3\))

\(\Leftrightarrow2\sqrt{x^2-2}=\sqrt{x+3}\)

\(\Leftrightarrow\sqrt{4\left(x^2-9\right)}=\sqrt{x+3}\)

\(\Leftrightarrow4\left(x^2-9\right)=x+3\)

\(\Leftrightarrow4x^2-36=x+3\)

\(\Leftrightarrow4x^2-x-36-3=0\)

\(\Leftrightarrow4x^2-x-39=0\)

\(\Rightarrow\Delta=\left(-1\right)^2-4\cdot4\cdot\left(-39\right)=625>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{1+\sqrt{625}}{8}=\dfrac{13}{4}\left(tm\right)\\x_2=\dfrac{1-\sqrt{625}}{8}=-3\left(ktm\right)\end{matrix}\right.\)

28 tháng 1 2021

a, \(\sqrt{2x^2-2x+m}=x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-2x+m=x^2+2x+1\\x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-4x+m-1=0\left(1\right)\\x\ge-1\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(\left(1\right)\) có nghiệm \(x\ge-1\) chỉ có thể xảy ra các trường hợp sau

TH1: \(x_1\ge x_2\ge-1\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{x_1+x_2}{2}\ge-1\\1.f\left(-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\2\ge-1\\m+4\ge0\end{matrix}\right.\)

\(\Leftrightarrow-4\le m\le5\)

TH2: \(x_1\ge-1>x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}5-m\ge0\\m+4< 0\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(-4\le m\le5\)

8 tháng 10 2017

1.

a. ĐKXĐ : x lớn hơn hoặc bằng 1/2 

b. A\(\sqrt{2}\)\(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)

\(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)

=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)

\(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)

Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)

\(\Rightarrow A=2\)

Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)

Do đó : A= \(\sqrt{4x-2}\)

Vậy ............

8 tháng 10 2017

2. 

a. \(x\ge2\)hoặc x<0

b. A= \(2\sqrt{x^2-2x}\)

c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)

\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)

Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)

Vậy...........