K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

7 tháng 5 2016

\(\Leftrightarrow2m.2^x+\left(2m+1\right)\left(3-\sqrt{5}\right)^x+\left(3+\sqrt{5}\right)^x=0\)

\(\Leftrightarrow\left(\frac{3+\sqrt{5}}{2}\right)^x+\left(2m+1\right)\left(\frac{3-\sqrt{5}}{2}\right)^x+2m< 0\)

Đặt \(t=\left(\frac{3+\sqrt{5}}{2}\right)^x,0< t\le1\Rightarrow\frac{1}{t}=\left(\frac{3-\sqrt{5}}{2}\right)^x\)

Phương trình trở thành :

\(t+\left(2m+1\right)\frac{1}{t}+2m=0\) (*)

a. Khi \(m=-\frac{1}{2}\) ta có \(t=1\) suy ra \(\left(\frac{3+\sqrt{5}}{2}\right)^x=1\Leftrightarrow x=0\)

Vậy phương trình có nghiệm là \(x=0\)

b. Phương trình (*) \(\Leftrightarrow t^2+1=-2m\left(t+1\right)\Leftrightarrow\frac{t^2+1}{t+1}=-2m\)

Xét hàm số \(f\left(t\right)=\frac{t^2+1}{t+1};t\in\)(0;1]

Ta có : \(f'\left(t\right)=\frac{t^2+2t+1}{\left(t+1\right)^2}\Rightarrow f'\left(t\right)=0\Leftrightarrow=-1+\sqrt{2}\)

t f'(t) f(t) 0 1 0 - + 1 1 -1 + căn 2 2 căn 2 - 2

Suy ra phương trình đã cho có nghiệm đúng

\(\Leftrightarrow2\sqrt{2}-2\le-2m\le1\Leftrightarrow\sqrt{2}-1\ge m\ge-\frac{1}{2}\)

Vậy \(m\in\left[-\frac{1}{2};\sqrt{2}-1\right]\) là giá trị cần tìm

30 tháng 7 2016

lập đen ta ra r tính đen ta >=0 là dc

NV
23 tháng 11 2019

Bài 1:

ĐKXĐ: \(2-3x>0\Rightarrow x< \frac{2}{3}\)

\(\Leftrightarrow3x-m+5+2-3x=2x+2m-1\)

\(\Leftrightarrow2x=8-3m\Rightarrow x=\frac{8-3m}{2}\)

Để pt đã cho có nghiệm

\(\Rightarrow\frac{8-3m}{2}< \frac{2}{3}\Leftrightarrow24-9m< 4\Rightarrow m>\frac{20}{9}\)

Bài 2:

\(\Leftrightarrow\left(x-2\right)^4+4\left(x^2+2x-1\right)^4-5\left(x-2\right)^2\left(x^2+2x-1\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}\left(x-2\right)^2=a\ge0\\\left(x^2+2x-1\right)^2=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2+4b^2-5ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=\left(x^2+2x-1\right)^2\\\left(x-2\right)^2=4\left(x^2+2x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x^2+2x-1+x-2\right)\left(x^2+2x-1-x+2\right)=0\\\left(2x^2+4x-2+x-2\right)\left(2x^2+4x-2-x+2\right)=0\end{matrix}\right.\)

Bạn tự giải nốt, dạng cơ bản