Tam giác ABC đường cao AH, phân giác AD. Nếu \(\frac{BD}{CD}=\frac{1}{3}\) thì \(\frac{BH}{CH}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC=15+20=35cm
BD/CD=3/4
=>AB/AC=3/4
BH/CH=(AB/AC)^2=9/16
=>BH/9=CH/16=35/25=1,4
=>BH=12,6cm; CH=22,4cm
\(BC=BD+CD=15+20=35\left(cm\right)\)
Xét tam giác \(ABC\)phân giác \(AD\):
\(\frac{AB}{BD}=\frac{AC}{CD}\)(tính chất đường phân giác trong tam giác)
\(\Leftrightarrow\frac{AB}{15}=\frac{AC}{20}\Leftrightarrow AB=\frac{3}{4}AC\).
Xét tam giác \(ABC\)vuông tại \(A\):
\(BC^2=AB^2+AC^2\)(định lí Pythagore)
\(\Leftrightarrow35^2=\left(\frac{3}{4}AC\right)^2+AC^2\Leftrightarrow AC^2=784\Leftrightarrow AC=28\left(cm\right)\)
\(AC^2=CH.BC\Leftrightarrow CH=\frac{AC^2}{BC}=\frac{28^2}{35}=22,4\left(cm\right)\)
\(BH=35-22,4=12,6\left(cm\right)\)
A B C H D 51 68
\(\Delta ABC\)vuông đường cao AH:
\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.BC\end{cases}\Rightarrow\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}}\)
\(\Leftrightarrow\frac{BH}{CH}=\frac{AB^2}{AC^2}=\left(\frac{AB}{AC}\right)^2\)
Vì AD là đường phân giác \(\Delta ABC\)(gt);
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{51}{68}=\frac{3}{4}\)
\(\Rightarrow\left(\frac{AB}{AC}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)
\(\Rightarrow\frac{BH}{CH}=\frac{9}{14}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{BH}{9}=\frac{CH}{16}=\frac{BH+CH}{9+16}=\frac{BC}{25}=\frac{BD+CD}{25}=\frac{119}{25}\)
\(\Rightarrow BH=\frac{9.119}{25}=42,84cm\)
\(\Rightarrow CH=\frac{16.119}{25}=76,16cm\)
tích đúng mình làm cho