K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2016

đã đúng

23 tháng 3 2016

bài 1 : 

a) x - {x-[(-x-1)]} = 1

=> x -{x -[2x-1]} =1

=> x - {x-2x+1} =1

=> x - ( -1+1)=1

=> x+x-1 = 1

=> 2x = 2

=> x =1

vậy x = 1

b) ( x+5).(x-2)<0

=> x+5 và x-2 là 2 thừa số trái dấu

mà x-2 < x+5

=> x-2 âm => x<2

   x+5 dương=> x > -5

=> -5 < x<2

vậy ....

Bài 2 :

( x+1).(xy-1) = 3

vì x,y thuộc Z => x+1 thuộc Z , xy-1 thuộc Z

=> x + 1 avf xy -1 là các ước nguyên của 3

từ đó tìm được các giá trị

 + nếu x = -2 => y=1

+ nếu x = 2 => y =1

+ nếu x = -4 => y =0

b) 3x+4y-xy =15

x.(3-y)+4y = 15 x.(3-y)=15-4y

x.(3-y)=12-4y+3

x.(3-y) = 4.(3-y)+3

x.(3-y)-4.(3-y)=3

vì x,y thuộc Z => 3-y thuộc Z , x-4 thuộc Z

=> 3-y và x-4  là các ước nguyễn của 3

=>..... 

ta tìm được các giá trị của x và y

Bài 3:

nếu x = 0  thì 26^x = 1 khác 25^y + 24^z với mọi y, z thuộc N, loại

=> x lớn hơn hoặc = 1

=> 26^x chẵn

mà 25^y lẻ  với mọi y thuộc N

=> 24^7 lẻ => z =0

ta có 26^x = 25^y + 1 

với x = y+ 1 thì 26 = 25 +1 , đúng

với x > 1, y > 1 thì 26^x có 2 c/s t/c là 76

=> 26^x chia hết cho 4

25^y có 2 c/s t/c là 25 => 25^y chia 4 dư 1

=> 25 ^y + 1 chia 4 dư 2

=> 26^x khác 25^y + 1 , loại

Bài 4:

ta công tất cả các ( x-y)+(y-x)+(z+x) = 2012

đó là 2 lần x => x= 1006

rùi thay

ta có đ/s :

 z =1007

y = -1005

Bài 5 :

do 20/39 là phân số tối giản

có UWCLN ( 20,39 ) =1

mà phân số cần tìm UWCLN của tử và mẫu là 36

=> phân số cần tìm là :

20.36/39.36

= 720.1404

Đ/S: 720/1404

Bài 6 :

vì UWClN ( a,b) = 12 => a =12 m, b =12n

( m,n ) =1

BCNN ( a,b )  =12 .m.n =180

=> m.n = 15

do vai trò a,b bình đẳng, giải sử a lớn hơn hoặc bằng b

=> m lớn hơn hoặc bằng n

mà ( m,n ) =1 => m =15, n= 1

hoặc m =5, n =3

vậy vs a =180=> b=12

vs a = 60 => b =36

26 tháng 12 2021

\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)

Từ đó bạn tìm những giá trị của x nha!

9 tháng 8 2019

\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)

\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)

\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)

\(=>x=0\)

\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)

\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)

\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)

tu do \(=>x=-7,8;...;0;1;2;3;4\)
 

16 tháng 3 2020

Bài 1:

a, y+25 = -63-(-17)

   y+25  = -46

      y     = -46-25

      y     = -71

Vậy y = -71

b, y+ 20 = 95-75

    y+ 20 = 20

       y    = 20-20

       y    = 0

Vậy y = 0

c, 2y-15  = -11-(-16)

    2y -15 = 5

         2y = 5+15

         2y = 20

         y   = 20:2

         y   = 10

Vậy y = 10

d, -7-2y = -37-(-26)

    -7 -2y= -11

         2y= -7-(-11)

         2y= 4

         y  = 4:2

         y  = 2

Vậy y = 2

Dài quá mik chỉ làm bài 1 thôi nhưng CHÚC BẠN HỌC TỐT !!!~.~

16 tháng 3 2020

Bài 2:

a, -25 + 15 + x = 50

    (-25+15) + x = 50

        -10    + x  = 50

                 x    = 50 - (-10)

                 x    =  60

Vậy x=60

b, -25 + 15 + x = -35

       -10     + x = -35

               x     = -35-(-10)

               x     = -25

Vậy x=-25

c, -25 + 15 + x = -10

       -10   + x   = -10

                 x    = -10-(-10)

                 x    = 0

Vậy x = 0

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).