Tìm x, x thuộc Z để 7 phần x-3 thuộc Z
Giúp với ạ😐
Cảm ơn nhiều💦
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{9}\) < \(\dfrac{4}{7}\) < \(x\) + \(\dfrac{1}{9}\)
\(\dfrac{7x}{63}\) < \(\dfrac{36}{63}\) < \(\dfrac{63x}{63}\) + \(\dfrac{7}{63}\)
7\(x\) < 36 < 63\(x\) + 7
⇒\(\left\{{}\begin{matrix}7x< 36\\63x+7>36\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>36-7\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\63x>29\end{matrix}\right.\)⇒\(\left\{{}\begin{matrix}x< \dfrac{36}{7}\\x>\dfrac{29}{63}\end{matrix}\right.\)
\(\dfrac{29}{63}\)< \(x\) < \(\dfrac{36}{7}\) vì \(x\in\) Z nên \(x\in\) { 1; 2; 3; 4; 5}
⇒ \(\dfrac{x}{9}\) = \(\dfrac{1}{9}\); \(\dfrac{2}{9}\); \(\dfrac{3}{9}\); \(\dfrac{4}{9}\);\(\dfrac{5}{9}\)
\(\dfrac{x}{9}< \dfrac{4}{7}< \dfrac{x+1}{9}\)
=>\(\dfrac{7x}{63}< \dfrac{36}{63}< \dfrac{7x+7}{63}\)
\(\Rightarrow7x< 36< 7x+7\)
\(\Rightarrow x< \dfrac{36}{7}< x+1\)
\(\Rightarrow x< 5\dfrac{1}{7}< x+1\)
\(\Rightarrow x=5\)
a: \(C=\dfrac{5x+1+\left(2x-1\right)\left(x-1\right)+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2+7x+3+2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4}{x-1}\)
b: x=4 thì C=4/(4-1)=4/3
Khi x=-4 thì C=4/(-4-1)=-4/5
c: C>0
=>x-1>0
=>x>1
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
A = \(\dfrac{2\left(3\sqrt{x}+2\right)+4}{3\sqrt{x}+2}\)
= \(2+\dfrac{4}{3\sqrt{x}+2}\)
Để A nguyên
<=> \(\dfrac{4}{3\sqrt{x}+2}\) nguyên
<=> \(4⋮3\sqrt{x}+2\)
Ta có bảngg
\(3\sqrt{x}+2\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | \(\varnothing\) | \(\varnothing\) | 0 | \(\varnothing\) | \(\dfrac{4}{9}\) | \(\varnothing\) |
Thử lại | tm | loại |
KL: x = 0
A=\(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}\)=\(\dfrac{2(3\sqrt{x}+4)}{3\sqrt{x}+2}\)=\(2\cdot\left(1+\dfrac{2}{3\sqrt{x}+2}\right)\)
Để A∈Z
Thì \(3\sqrt{x}+2\)∈Ư(2)
Tức là \(3\sqrt{x}+2\)∈\(\left\{1;-1;2;-2\right\}\)
\(3\sqrt{x}+2=1\)(vô lí);\(3\sqrt{x}+2=-1\)(vô lí);\(3\sqrt{x}+2=-2\)(vô lí)
\(3\sqrt{x}+2=2\)=>x=0
Vì 0∈Z
Vậy x=0 thì thỏa mãn đề bài
`A=(6sqrtx+8)/(3sqrtx+2)`
`=(6sqrtx+4+4)/(3sqrtx+2)`
`=2+4/(3sqrtx+2)>2AAx>=0(1)`
Vì `3sqrtx>=0`
`=>3sqrtx+2>=2`
`=>4/(3sqrtx+2)<=2`
`=>A<=4(2)`
`(1)(2)=>2<A<=4`
Mà `A in ZZ`
`=>A in {3,4}`
`**A=3`
`<=>4/(3sqrtx+2)=1`
`<=>4=3sqrtx+2`
`<=>3sqrtx=2`
`<=>x=4/9`
`**A=4`
`<=>4/(3sqrtx+2)=2`
`<=>6sqrtx+4=4`
`<=>6sqrtx=0`
`<=>sqrtx=0`
`<=>x=0`
đk: \(x\ge0\)
A = \(\dfrac{2\left(3\sqrt{x}+2\right)+4}{3\sqrt{x}+2}\)
= \(2+\dfrac{4}{3\sqrt{x}+2}\)
Để A \(\in Z\)
<=> \(4⋮3\sqrt{x}+2\)
Ta có bảng:
\(3\sqrt{x}+2\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | \(\varnothing\) | \(\varnothing\) | 0 | \(\varnothing\) | \(\dfrac{4}{9}\) | \(\varnothing\) |
tm | tm |
Ta có : (-1)+3+(-5)+7+.....+[-(x-2)+x]=600
[(-1)+3]+[(-5)+7]+.....+[-(x-2)]+x=600
2 + 2 + .... + 2 = 600
2 . (1+1+ ...... + 1 ) = 600
\(\Leftrightarrow\) 1 + 1 + .... + 1 = 600 : 2
\(\Leftrightarrow\)1 + 1 + ..... + 1 = 300
Số dấu [] là : (x - 3 ) : 4 + 1
\(\Rightarrow\)(x - 3 ) : 4 + 1 = 300
\(\Rightarrow\)(x-3) : 4 = 299
\(\Rightarrow\)x - 3 = 299 x 4
\(\Rightarrow\)x - 3 = 1196
\(\Rightarrow\)x = 1196 + 3
\(\Rightarrow\)x = 1199
Vậy x = 1199.
# HOK TỐT #
Để E là số nguyên thì \(x-5⋮x+2\)
\(\Leftrightarrow x+2\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{-1;-3;5;-9\right\}\)
Để \(\frac{7}{x-3}\in z\)
=> 7 chia hết cho x - 3
\(\Rightarrow x-3\inƯ_{\left(7\right)}=\left\{\pm1;\pm7\right\}\)
nếu x - 3 = 1 => x = 4 (TM)
x -3 = -1 => x = 2 (TM)
...
rùi bn tự lm típ nhé!